S.E. (Robotics and Automation) COMPUTER GRAPHICS FOR ROBOTICS (2019 Pattern) (Semester-IV) (211512)

Time: $2^{1 ⁄ 2}$ Hours]
[Max. Marks: 70
Instructions to the candidates:

1) Neat diagrams must bedrawn wherever necessary.
2) Figures to the right indicate full marks.
3) Use of Calculator is allowed.
4) Assume suitable data, if necessary.

Q1) a) A quaternion q_{1} rotates 0° about Y axis and quaternion q_{2} rotates 90° about, Y axis. Obtain the interpolation quaternionat parameter $t=0.4$.
b) Explain the application of Inverse distance wéighting method for surface xgeneration.

OR
Q2) a) Obtain the interpolation vectory the Vectors $v_{1}=[20]$ and $v_{2}=[01]$ at $t=0.3$.
b) Explain the application of quaterions to obtain the combined roll, pitch and yaw motion of a robot gripper.

Q3) a) Obtain $x-y$ co-ordinates of/a point on Bezier curve at parameter valué $t=0.4$ considering control points as $(2,5),(3,8),(5,3)$ and $(2,15)$. $[2]$
b) Explain the applications of B spline and Bezier curves in robet path planning.

Q4) a) Obtain x, y, and z co-ordinate of point on the quadratic Bazier surface patch at $\mathrm{u}=0.5$ and $\mathrm{v}=0.5$ using following control points:

$$
\begin{aligned}
& p_{\omega}=(0.0 .0) \quad p_{01}=(1.1 .0) \quad p_{02}=(2.0 .0) \\
& p_{10}=(0.1 .1) \quad p_{11}=(1.2 .1) \quad p_{12}=(2.1 .1) \\
& \mathrm{p}_{30}=(0.0 .2) \quad p_{21}=(1.1 .2) \quad p_{22}=(2.0 .2)
\end{aligned}
$$

b) What are B-spling curves? How the geometric continuity is determined for B spline curves?

Q5) a) A plane contains vectors $a=i-j$ \& $3 k$ and $=i-2 k$. A point in the plane is $(1,3,2)$. Obtain the equation of plane.
b) Determine the point of intersection of two lines AB and CD having coordinates of point $A(3,1,2)$, point $B(4,4,6)$, point $C(2,1,5)$ and point $\mathrm{D}(3.857,2.285,2$ 2428). Consider parameter t for line AB as 0.7 and parameter s forline CDös 0.3.

OR
Q6) a) Obtain the equation of the plane inclined to Y axis ad Z axis by 45°. It is parallel to X axis and contains a point $(0,0,1)$.
b) Write hote on.Application of analytic geometry in robotics

Q7) a) Demonstrate with example, the outer product Cof 2 Vectors in 3 dimensional space.
b) Explatin the applicaitons of applied geometricalgebra for modelling of fobotics physics.

Q8) a) Show that the multiplication of basis blades e_{3} and e_{13} is $-e_{1}$
b) Write short note on: Reflection and rotation.

