Total No. of Questions : 9]

PB3688

P.T.O.

- Q4) a) 20% of bolts produced by a machine are defective. Determine the probability that out of 4 bolts chosen at random [5]
 - i) 1 bolt is defective
 - ii) almost 2 bolts are defective
 - b) Number of road accidents on a highway during a month follows poisson's distribution with mean 5. Find the probability that in a certain month number of accidents on the highway will be [5]
 - i) less than 3
 - ii) more than 3
 - c) Suppose heights of students follows normal distribution with mean 190cm and variance 80 cm². In a school of 1000 students how many would you expect to be above 200cm tall. (Given Area A = 0.3686) [5]

OR

- Q5) a) A die is thrown twice X denote the sum of digits in two throws. Find the mathematical expectation of X. [5]
 - b) The average number of misprints per page of a book is 1.5. Assuming the distribution of number of misprints to be poisson, find. [5]
 - i) The probability that a particular book is free from misprint.
 - ii) Number of pages containing more than one misprint if the book contains 900 pages
 - c) A coin is so biased that appearance of head is twice likely as that of tail. If a throw is made 6 times find the probability that atleast 2 heads will appear.
- **Q6)** a) Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ where $\overline{F} = x^2\overline{i} + xy\overline{j}$ and C is the are of the parabola

 $y = x^2$ joining (0, 0) and (1, 1)

[5]

[5]

b) Show that the vector field given by

$$\overline{F} = (y^2 \cos x + z^2) \overline{i} + (2y \sin x) \overline{j} + 2xz\overline{k}$$
 is irrotational-

Find scalar potential ϕ such that $\overline{F} = \nabla \phi$

c) Find the directional derivative of $\phi = x^2 + y^2 + z^2$ at (1, -1, 1) along the vector $\overline{i} + 2\overline{j} + 2\overline{k}$ [5]

[6261]-96

OR

If $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ represents the vibrations of a string of length *l* fixed at **Q9)** a) both ends, find the solution with boundary conditions, [8] $y\left(0,t\right)=0$ i) y(l,t) = 0ii) and initial conditions iii) $(x, 0) = k (lx - x^2), 0 \le x \le l$ Solve the equation $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$ with conditions b) [7] $V = 0 \text{ when } y \to +\infty \text{ for all } \mathbf{x}$ V = 0 when x = 0 for all values of y ii) V = 0 when x = 1 for all values of y. iii) V = x (1 - x) when y = 0 for 0 < x < 1. iv) 5 [6261]-96