
Total No. of Questions : 4] P5426		SEAT No. : [Total No. of Pages : 2
	[(10(DEE)	
[6186] 552		
S.E. (Production Engg. and Industrial Engg./ Production Sandwich/		
Robotics and Automation) (Insem)		
STRENGTH OF MATERIALS		
(2019 Pattern) (Semester - III) (211082)		
Time: 1 Hour]		[Max. Marks : 30
Instructions to the candidates:		
1) Solve Q.1 or Q.2, Q.3 or Q		3
2) Neat diagrams must be dr		+
3) Figures to the right side indicate full marks.4) Use of Calculator is allowed.		
5) Assume suitable data if n		
3) History suitable data ty n	ceessary.	
Q1) a) Define:		[4]
i) Stress		
ii) Strain		
iii) Poisson's Ratio		
iv) Bulk Modulus		
b) A rod of 200 cm long	g and of diameter 2.5	cm is subjected to an axial
pull of 25 KN. If the	e modulus of elastic	city of the rod material is
$2 \times 10^5 \mathrm{N/mm^2}$	3 %	[5]
Determine:		
i) Stress	6.	
ii) Strain	`	
iii) Elongation		
c) In a tensile test carr	ied out on 20 mm di	ameter rod, the elongation
measured on 150 mm	n length was found to	be 0.12 mm under a load of
50 KN. The change i	n diameter was found	to be 0.05 mm. Determine
Young's Modulus an	d Poisson's Ratio for	rod material. Also find the
change in volume of	bar.	[6]
	OR	5
Q2) a) Explain the concept	of 'Thermal Stresses)	in Composite Bar' and also
derive the expression	for the same.	[5]
b) A Steel bar 4m long	is 32 mm in diameter	for 1m of length, 28 mm in
diameter for 2 m leng	th and 25 mm in diame	ter for remaining 1m length.
The bar is in tensi	on and the stress o	n the smallest section is
110 N/mm ² . Find tota	al elongation of the ba	r. [5]
	Ø. v	P.T.O.
	V*	

- A short concrete column section of 400 mm × 400 mm section is reinforced c) axially with four symmetrically placed steel bars each 250 mm² in the area. If the applied load P = 800 KN, compute the stresses developed in each material. Assume modulus of elasticity for steel material as 13 times that of concrete. [5]
- State with neat sketches, different types of beams. **Q3**) a) [3]
 - Explain the rules to draw the shear force and bending moment diagram.[4] b)
 - Draw the shear force and bending moment diagram for a simply supported c) beam carrying 20 KN/m run spread over a distance of 3m from left end. Take the span of beam as 6m. [8]

OR

- Draw the shear force and bending moment diagram for a simply supported **Q4**) a) beam AB of length 8m having point loads of 4 KN, 10 KN, and 7 KN at 1.5m, 4m, and 6m from end A respectively. [7]
 - b) A Steel bar ABCD of uniform cross section 100 mm² is subjected to the axial forces as shown in figure. Calculate the change in length of the bar. Consider $E = 2 \times 10^5$ MPa. [8]

