Total No. of Questions : 9]

P-9169

[Total No. of Pages : 5

[6179]-296

S.E. (Production and Industrial Engineering)/(Robotics & Automation Engg.)/(Sandwich) ENGINEERING MATHEMATICS - III (2019 Pattern) (Semester - III) (207007)

		$\partial^2 u + \partial^2 u$	0					
	e)	Most general solution of the partial differential equation $\frac{\partial^2 x}{\partial y^2} + \frac{\partial^2 y}{\partial y^2} = 0$	0					
		representing metal plate having length x & breadth $y \to \infty$ is [2]	2]					
	i) $(C_1 \cos mx + C_2 \sin mx) (C_3 e^{my} + C_4 e^{-my})$							
		ii) $(C_1 e^{mx} + C_2 e^{-mx})$						
		iii) $(C_1 e^{mx} + C_2 e^{-mx})$						
	iv) $(C_1 \cos hmx + C_2 \sin hmx) (C_3 \cos my + C_4 \sin my)$							
	f)	If probability of success $p = 0.7$ then probability of failure $q = $	[]					
		i) 0.2 ii) 1.7						
		m) -0.7 iv) 0.3						
02)	a)	Fit a Straight line of the from $y = ax + b$ to the following data by least	st					
~ /	,	square method [5	;]					
		\propto 0 5 10 15 20 25						
	(y 12 15 17 22 24 30						
	b) (Calculate the first four moments about the mean of the followin	g					
		distribution [5	;]					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	c	J I 8 28 20 70 30 28 8 1	ro					
	0)	miles) & depth rate (per thousand persons) from data ralated to 5 cities.	5]					
		x 200 500 400 700 300	20					
		f 12 18 16 21 10	N					
		OR S	,					
Q3)	a)	Fit a Straight line of the from $y = ax + b$ following data, by using metho	d					
		of least squares [5	;]					
		x = 0 $1 = 2$ $3 = 4$ $5 = 6$ 7 0						
	h	y = -33 - 1 - 1 - 3 - 5 - 7 - 9 The first four moments of a distribution about the value 2 are -2 - 17	ר					
C	0)	-20 & 100 calculate [5	2, 51					
		i) First four central moments.	. 1					
		ii) Coefficients of Skewness & Kurtosis						
	c)	Find the regression line of y on x for the following data [5	5]					
		<u>x 10 14 18 22 26 30</u>						
		y 18 12 24 6 30 36						
		20.V						
[617	791-2	96 2						
•		- 💉'						

Q4) a) A set of five similar coins is tossed 210 times & the result is

No. of Heads	0	1	2	3	4	5
Frequency	2	and	20	60	100	23

Test the hypothesis that the data follow a binomial distribution. [Given $\chi^2_{5:0.05} = 5.991$]

- b) A manufacturer of cotter pins known that 2% of his product is defective. If he sells cotter pins in boxes of 100 pins & guarantees that not more than 5 pins will be defective in a box find the approximate probability that a box will fail to meet the guaranteed quality. [5]
- c) A random sample of 200 screws is drawn from a population with which represent size of screws. If a sample is distribution normally with a mean 3.15 cm & standard 0.025cm find the expected number of screws whose size fall between 3.12 & 3.2 cm. [Given A(1.2) = 0.3849; A(2) = 0.4772] [5]
- Q5) a) On an average box containing 10 articles is likely to have 2 defectives.
 If we consider a consignment of 100 boxes how many of them are expected to have three or less defectives? [5]
 - b) Number of road accident on a highway during a month follows a Poisson distribution with mean 5. Find the probability that in a certain month number of accidents on the highway will be.
 - i) less than 3
 - ii) between 3 and 5
 - c) In experiment on pea breeding, the following frequencies of seeds were obtained [5]

Round & green	Wrinkled green	Round & yellow	Wrinkled & yellow	Total
222	120	32	150	524

Theory predicts that the frequencies should be in proportion 8:2:2:1Examine the correspondence between theory & experiment.

[Given
$$\chi^2_{3:0.05} = 7.815$$
]

[6179]-296

[5]

3

- Find the directional derivative of $\phi = xy + yz^2$ at (1, -1, 1) along the **Q6**) a) line $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-1}{2}$. [5] Show that vector field $\overline{k} = (x^2 - yz)\overline{i} + (y^2 - xz)\overline{j} + (z^2 - xy)\overline{k}$ is b) irrotational. Find scalar ϕ such that $\overline{F} = \nabla \phi$. [5] Evaluate $\int \mathbf{F} d\mathbf{r}$ along straight line joining (0, 0) and (1, 1) where c) $\overline{\mathbf{F}} = (2x + y^2)\overline{i} + (3y - 4x)\overline{j}.$ [5] Find the directional derivative of $\phi = x + y^2 + z^3$ at the point (1, 1, -1)Q7) a) along the direction of $2\overline{i} - \overline{j} + 3\overline{k}$. [5] Show that (any one): b) [5] $\nabla \left(\frac{\overline{a}.\overline{r}}{r} \right) = \frac{\overline{a}}{r} - \frac{(\overline{a}.\overline{r})\overline{r}}{r^3}$ $\nabla^2 \left(\nabla \cdot \left(\frac{\overline{r}}{r^2} \right) \right) = \frac{2}{r^4}$ ii) Evaluate $\oint \overline{F} d\overline{r}$ for a closed curve which is given by $x^2 + y^2 = 1$, z = 0c) where $\overline{F} = \cos y \overline{i + x(1 - \sin y)} \overline{j}$ by using Green's Lemma. [5] A string is stretched and fastened to two points distanced one meter (Q8) a) apart is displaced in to the form y(x, 0) = x from which it is released at t = 0. Determine the displacement of the string at a distance x from one [8] end. Solve $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$, if [7]
 - $u(0, t) = 0^{\circ} C$ i)
 - $u(1, t) = 0^{\circ}C$ ii)
 - iii) $u(x, 0) = 50^{\circ}$ C, 0 < x < 1
 - iv) u(x, t) is finite, $\forall t$

OR

[6179]-296

4

Q9) a) Using Fourier transform, solve the equation

[6179]-296 s
$$\frac{\partial u}{\partial x^2}$$
, $0 < x < \infty$, $t > 0$, subject to the conditions. [8]
a) $u(0, t) = 0, t > 0$
b) $u(x, 0) = 0, t > 0$
c) $u(x, 0) = 0, t > 0, t > 0, t > 0$
c) $u(x, 0) = 0, t > 0, t > 0, t > 0, t > 0, t$