SEAT No. : \square
[Total No. of Pages : 5

[6179]-296

S.E. (Production and Industrial Engineering)/(Robotics \& Automation Engg.)/(Sandwich) ENGINEERING MATHEMATICS - III (2019 Pattern) (Semester - III) (207007)

Time : 2½ Hours
[Max. Marks : 70
Instructions to the candidates :

1) Q. 1 is compulsory. Attempt $Q .2$ or $Q .3, Q .4$ or $Q .5, Q .6$ or $Q .8 .8$ or Q.9.
2) Figures to the right indicate full marks.
3) Assume suitable data, wherever necessary.
4) Use of electronic pocket calculator is allowed.

Q1) a) The first four moments about the working mean 5 are $-1,10,11,16$ then value of second moment μ_{2} aboutmean is given by
i) 10
ii) 9
iii) 8
(iv) 7
b) Mean and standard deviation of Binomial distribution are 25 and 5 respectively. Number of trials ' n ' is
i) 42
ii) 40
iii) 9
iv) 44
c) $\quad \nabla^{2}\left(\frac{1}{r^{2}}\right)$
ii) $\frac{2}{r^{4}}$
i) $\frac{1}{r^{3}}$
iv) $\frac{6}{r^{4}}$
d) For a constant vector $\bar{a}, \nabla(\bar{a} \cdot \bar{r})=$
i) \bar{a}
ii) $3 \bar{a}$
iii) \bar{r}
iv) 0
iii) $\frac{-2}{r^{4}} \bar{r}$

e) Most general solution of the partia!ीifferential equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ representing metal plate having length $x \&$ breadth $y \rightarrow \infty$ is
i) $\left(\mathrm{C}_{1} \cos m x+\mathrm{C}_{2} \sin m x\right)\left(\mathrm{C}_{3} e^{m y}+\mathrm{C}_{4} e^{-m y}\right)$
ii) $\quad\left(\mathrm{C}_{1} e^{m x}+\mathrm{C}_{2} e^{-m x}\right)$
iii) $\left(\mathrm{C}_{1} e^{m x}+\mathrm{e}_{2} e^{-m x}\right)$?
iv) $\left(\mathrm{C}_{1} \cosh h x+\mathrm{C}_{2} \sin h m x\right)\left(\mathrm{C}_{3} \cos m y+\mathrm{C}_{4} \sin m y\right)$
f) If probability of suecess $p=0.7$ then probability of failure $q=$
i)
ii) 1.7
iii) 07
iv) 0.3

Q2) a) Fita Straight line of the from $y=a x+b$ to the following data by least square method

x	0	5	10	15	20	25
$x y$	12	15	17	22	24	30

b) Calculate the first four moments about the mean of the following distribution

x	0	1	2	3	4	5	6	7	8
f	1	8	28	36	70	56	28	8	1

c) Obtain the correlation coerficientbetween population density (per square miles) \& depth rate (per thousand persons) from data ralated to 5 cities.[5]

x	200	500	400	700	300
f	12	18	${ }^{2} 16$	21	10

Q3) a) Fit a Straight line of the from $y=a x+b$ following data, by using method of least squares

x	0	1	$\cdot 2$	3	4	5	6	7
y	-5	-3	-1	1	3	5	7	9

b) The first four moments of a distribution about the value 2 are $-2,12$, $-20 \& 100$ calculate
i) First four central moments.
ii) Coefficients of Skewness \& Kurtosis
c) Find the regression line of y on x for the following data

x	10	14	18	22	26	30
y	18	12	24	6	30	36

Q4) a) A set of five similar coins is tossed 210 times $\&$ the result is

No. of Heads	0	1	2	3	4	5
Frequency	2	2	20	60	100	23

Test the hypothesis that the data follow a binomial distribution. $\left[\right.$ Given $\left.\chi_{50.05}^{2}=55.991\right]$
b) A manufacturer of cotter pins known that 2% of his product is defective. If he sellscotter pins in boxes of 100 pins \& guarantees that not more than 5 pins will be defective in a box find the approximate probability that a box will fail to meet the guaranteed quality.
c) Arandom sample of 200 screws is drawn from a popatation with which representsize of screws. If a sample is distribution northally with a mean $3.15 \mathrm{~cm} \&$ standard 0.025 cm find the expected number of screws whose size fáll between $3.12 \& 3.2 \mathrm{~cm}$. [Given $\mathrm{A}(1.2)=0.3849 ; \mathrm{A}(2)=0.4772]$

OR

Q5) a) On an average box containing le artictes is likely to have 2 defectives. If we consider a consignment of 100 boxes how many of them are expected to have three orless defectives?
b) Number of road accider ton a highway during a month follows a Poisson distribution with meas 5. Find the probability that in a certain month number of accidents on the inghway will be.
i) less than 3
ii) between 3 and 5
c) In experiment ospéa breeding, the following frequencies of,seéds were obtained

 green	Wrinkled green	 yellow	 yellow	Total
222	120	32	150	524

Theory predicts that the frequencies stiould be in proportion $8: 2: 2: 1$
Examine the correspondence between theory \& experiment.
$\left[\right.$ Given $\left.\chi_{3.05}^{2}=7.815\right]$

Q6) a) Find the directional derivative of $\oint \in x y+y z^{2}$ at $(1,-1,1)$ along the line $\frac{x-1}{1}=\frac{y+1}{2}=\frac{z-1}{2}$.
b) Show that vector field $\hat{F}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-x z\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ is irrotational. Find scalar ϕ such that $\overline{\mathrm{F}}=\nabla \phi$.
c) Evaluate $\int \overline{\mathrm{F}} . \mathrm{d} \bar{r}$ along straight line joining $(0,0)$ and $(1,1)$ where

$$
\begin{equation*}
\overline{\mathrm{F}}=\left(2 x+y^{2}\right) \bar{i}+(3 y-4 x) \bar{j} \tag{5}
\end{equation*}
$$

OR
Q7) a) Find the directional derivative of $\phi=x+y^{2}+z^{3}$ at the point $(1,1,-1)$ along the direction of $2 \bar{i}-\bar{j}+3 \bar{k}$.
b) Show that (any one) :
i) $\nabla\left(\frac{\bar{a} \cdot \bar{r}}{r}\right)=\frac{\bar{a}}{r}-\frac{(\bar{a} \cdot \bar{r}) \bar{r}}{r^{3}}$
ii) $\quad \nabla^{2}\left(\nabla \cdot\left(\frac{\bar{r}}{r^{2}}\right)\right)=\frac{2}{r^{4}}$
c) Evaluate $\oint_{\mathrm{C}} \overline{\mathrm{F}} . d \bar{r}$ for a closed curve which is given by $x^{2}+y^{2}=1, z=0$ where $\overline{\mathrm{F}}=\cos y \bar{i}+\mathcal{x}(1-\sin y) \bar{j}$ by using Green's Lemma.

Q8) a) A string is stretched and fastened to two points distanced one meter apart is displaced in to the form $y(x, 0)=x$ from which it is released at $t=0$. Determine the displacement of the string at a distance x from one end.
b) Solve $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$, if
i) $u(0, t)=0^{\circ} \mathrm{C}$
ii) $u(1, t)=0^{\circ} \mathrm{C}$
iii) $u(x, 0)=50^{\circ} \mathrm{C}, 0<x<1$
iv) $u(x, t)$ is finite, $\forall t$

Q9) a) Using Fourier transform, solve the equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<\infty, t>0$ subject to the conditions.
i) $u(0, t)=0, t>0$
ii) $u(x, 0)=e^{-x} x>0 \dot{j}$
iii) $u \rightarrow 0$ and $\frac{\partial u}{\partial x} \rightarrow 0$ as $x \rightarrow \infty$
b) Determine the distribution of temperature in the semi infinite medium $x \geq 0,0<y<1$ when the end $x=0$ is maintained at zero temperature and the initial distribution of temperature is $f(x)$.

$$
\nabla \nabla \nabla \nabla
$$

