[6002]-235

S.E. (Robotics and Automation) STRENGTH OF MATERIALS (Semester-III) (2019 Pattern) (211082)

Time : $\mathbf{2 ¹}^{1 ⁄ 2}$ Hours]

[Max. Marks : 70

Instructions to the eandidates:

1) Neat diagrams must be drawn wherever necessary
2) Figures to the right indicate full marks
3) Use of calculator is allowed
4) Assume Suitable data if necessary

Q1) a) A timber deam of rectangular section carries a load of 2 kN at mid-span. The beam is simply supported over a span of 3.6 m . If the depth of section is to be twice the breadth, andthe bending stress in not to exceed $9 \mathrm{~N} / \mathrm{mm}^{2}$, determine the cross-secional dimensions.
b) What do you mean by Shear Stress in-Beams?
c) What do you mean by Section modulus? State the formula for section modulus of rectangular and circulas section.

Q2) a) A rectangular beam of breath 100 mm and depth 200 mm is simply supported over a span of 4 m . The beam is loaded with a uniformdy distributed load of $5 \mathrm{kN} /$ mover the entire span. Find the maximum bending stresses.
b) An I section beam $3.50 \mathrm{~mm} \times 200 \mathrm{~mm}$ has a web thickness of 12.5 mm and a flange thickness of 25 mm . It carries a shearing force of 200 kN at a
section. Sketch the stress distribution across the section.
Q3) a) Using Mohar's circle, obtain the maximum shear stress int the body when it is subjected to direct tensile stress in one prane arcompanied by a simple shear stress.
b) A steel bar $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ in section and 3) m in ength is subjected to a axial pull of 140 KN . Calculate the strain energustored in the bar and also find extension of the bar. Assume modulus ofelasticity as 200 GPa . [9]

Q4) a) The radius of Mohr's circle of stress of strained element is 20 MPa and a minor tensile stress is 20 MPa . Betermine the major principal stress. [7]
b) Evaluate the principal stresses and principal planes for the state of stress shown in Figure.

Q5) a) What must be the length of a 5 mm diameter aluminium wire so that it can be twisted through 1 compléte revolution without exceeding a shear of $42 \mathrm{~N} / \mathrm{mm}^{2}$. Take, $G=27$ GPa.
b) A closed cylinder 600 mm diameter and 2 m long has shelt thickness of 12 mm . It carries a fluid under pressure at 3 MPa . Calculate thelongitudinal and hoop stress in the drum wall. Also determinethe change in length, change in diameter and change in volume of the drum. Assume $\mathrm{E}=2 \times 10^{5}$ MPa and Poisson ration of 0.3 .

Q6) a) A cylindrical compressed air drum is 2 m in diameter with plates 12.5 mm thick. The efficiencies of the longiufdinal and circumferential joints ane 85% and 45% respectively. If thé tensile stress in the plating is to be limited to $100 \mathrm{MN} / \mathrm{m}^{2}$, find the smaximum safe air pressure.
[10]
b) A cylindrical boiter is 2.5 in diameter and 20 mm in thickness and it carries steam atapressure of $1.0 \mathrm{~N} / \mathrm{mm}^{2}$: Find the stresses in the shell.[8]

Q7) a) A beam of length 5 m and of uniform rectangular section is simply supported at its ends. It carries a uniformly distributed load of $9 \mathrm{KN} / \mathrm{m}$ run ôver the entire length. Calculate the width and depth of the beam if permissible bending stress is $7 \mathrm{~N} / \mathrm{mm}^{2}$ and central deffection is not to exceed $\hbar \mathrm{cm}$.
b) A 民antilever of length 3 m is carrying a point doad of 25 KN at the free end. If moment of inertia $=108 \mathrm{~mm}^{4}$ and $\mathrm{E}_{\mathrm{n}}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ find the silope and deflection at the free end

OR

Q8) a) A cantilever of length 2.5 mincaries a uniformly distributed load of 16.4 KN per meter length. Ifmementof inertia $=7.95 \times 10^{7} \mathrm{~mm}^{4}$ and $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$, determine the deflection at the free end.
b) A cantilever of length 3 m carries a uniformly distributed load overthe entire length. If the deflection at the free end is 40 mm , find the slope at the free end.

