Total No. of Questions : 9]

P1553

SEAT No. : [Total No. of Pages : 5

[6002]-183

S.E. (P.E. & I.E./Production SW/RA) ENGINEERING MATHEMATICS-III (2019 Pattern) (Semester-III) (207007)

Time : 2¹/₂ Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Q.1 is compulsory. Attempt Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q.9.
- 2) Figures to the right indicate full marks.
- 3) Use graph paper for Graphical Solution.
- 4) Use of electronic pocket calculator is allowed.
- 5) Assume suitable data if necessary.

Q1) a) $\mu_2 = 16$, $\mu_4 = 162$. coefficient of kurtosis β_2 is given by.

[2]

iii) 0.63

b) A box contains 100 bulbs out of which 10 are defective. A sample of 5 bulbs are drawn. The probability that none is defective is [2]

iv)

1.69

i) ii) iii) iv) $\nabla \overline{r}$ where $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ is equal to [2] 0 i) ii) $x^2 + y^2 + z^2$ iii) iv) A vector field \overline{F} is irrotational if [1] d) i) $\nabla \cdot \overline{F} = 0$ ii) $\overline{F}.\overline{F}=0$ iii) *P.T.O.* e) If $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ (Represents the vibrations of a string of length l fixed at both ends) with general solution $y(x,t) = (C_1 \cos mx + C_2 \sin mx)$ ($C_3 \cos \operatorname{cmt} + C_4 \sin \operatorname{cmt}$) then Y(0,t) = 0 implies. [2]

ii)

np

iv) npq^2

[1]

- i) $C_2=0$ iii) $C_3=0$ iii) $C_4=0$ iv) $C_1=0$
- f) Variance of binomial probability distribution is

i)

iii

Q2) a) Fit a straight line of the form y = ax + b to the following data. [5]

xx	1	3	5	7 .9
	1.5	2.8	4.0	4.7 6

- b) The first four moments about the working mean 30.2 of a distribution are 0.255, 6.222, 30.211 and 400.25 Calculate the first four moments about mean also evaluate β_1 and β_2 [5]
- c) Calculate coefficient of correlation from the following information. $n = 10 \Sigma x = 40, \Sigma x^2 = 190, \Sigma y^2 = 200, \Sigma xy = 150 \Sigma y = 40$
- **Q3**) a) Fit a straight line of the form y = ax + b to the following data.

x	1	3	4	92%	6	8
y	-3	1	30	• 5	7	11

b) Calculate the first four central moments for the following frequencies.[5]

	x	0-10	10-20	20-30	30-40	40-50
9	y	6	26	47	15	6

- c) The regression equations are 8x 10y + 66 = 0 and 40x-18y = 214. The value of variance of X is 9. find [5]
 - i) Mean values of x & y
 - ii) Correlation coefficient between $x \ll y$

[6002]-183

OR

- If mean and variance of a binomial distribution are 12 and 3 respectively, **Q4**) a) find $P(r \ge 1)$ [5]
 - An unbaised coin is thrown 10 times. Find the probability of getting b) exactly 6 heads and atleast 6 heads using binomial distribution. [5]
 - An aptitude test for selecting officers in a bank conducted on 1000 c) candidates. The average score is 42 and standard deviation of score is 24. Assuming normal distribution for the score find; [5]
 - The number of candidates exceed 60 i)
 - The number of candidates score lies between 30 and 60 ii)

$$[Given A (0.75)=0.2734, A (0.5)=0.1915]$$

OR

- If the probability that an individual suffers a bad reaction from a certain **Q5**) a) injection is 0.001 determine the probability that out of 2000 individuals more than 2 individuals suffer a bad reaction. [5]
 - On an average 20% of the workers in an industry suffer with a certain **b**) diseases. If 12 workers are chosen from the industry, find the probability that exactly 2workers suffer from the disease. [5]
 - A die is tossed 60 times and frequency of each face in indicated below c)

$$\frac{x | 1 | 2 | 3 | 4 | 5 | 6}{y | 5 | 7 | 5 | 14 | 13 | 6}$$
Test the die is fair [Given $\chi^2_{0;0.05} = 11.07$] [5]
Q6) a) Find the directional derivative of $\phi = x^2yz^3$ at the point (2, 9, -1) in the direction of $3\overline{i} + 4\overline{k}$ [5]
b) Show that $\overline{F} = (y^2 \cos x + z^2)\overline{i} + (2y \sin x)\overline{j} + 2xz\overline{k}$ is irrotational. Find scalar ϕ such that $\overline{F} = \nabla \phi$ [5]
c) Evaluate $\int_c \overline{F} d\overline{r}$ along the straight line joining (0,0) and (3,2) where $\overline{F} = (2x + y)\overline{i} + (3y - x)\overline{j}$ [5]
OR

[6002]-183

Q9) a) An infinitely long plane uniform plate is bounded by two parallel edges in the *y* direction and an end at right angles to them. The breadth of the plate is π . This end is maintained at temperature u_0 at all points and other edges at zero temperature. Find the steady state temperature function u(x,y) [8]

