S.E. (P.E. \& I.E./Pšoduction SW/RA)
 ENGINEERINGMATHEMATICS-III (2019 Pattern) (Semester-III) (207007)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Q. 1 is compulsory. Attempt Q. 2 or Q.3, Q. 4 or Q.5, Q. 6 or Q.7, Q. 8 or Q.9.
2) Figures to the right indicate full marks.
3) Use graph paperfor Graphical Solution.
4) Use of electronic pocket calculator is allowed.
5) Assume suitable data if necessary.

Q1) a) $\mu_{2}=9 \%$ 웅 $\mu_{4}=162$. coefficient of kurtosis β_{2} is given by.
(1) 1
aii) (1.81
iii) 0.63
(iv) 1.69
b) A box contains 100 bulbs gutof which 10 are defective. A sample of 5 bulbs are drawn. The probability that none is defective is
i) $\left(\frac{1}{10}\right)^{5}$
ii) $\left(\frac{1}{2}\right)^{5}$
iii)

iv) $\frac{9}{10}$
c) $\nabla \cdot \bar{r}$ where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ is equal to

(
i) 0
iii) $x^{2}+y^{2}+z^{2}$
d) A vector field $\overline{\mathrm{F}}$ is irrotational if
ii) 1
iv)

i) $\nabla \cdot \bar{F}=0$
ii) $\nabla \times \vec{F}=0$
iii) $\overline{\mathrm{F}} \cdot \overline{\mathrm{F}}=0$
e) If $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ (Represents the vibिations of a string of length 1 fixed at both ends) with general solution $y(x, t)=\left(\mathrm{C}_{1} \cos m x+\mathrm{C}_{2} \sin m x\right)$ $\left(\mathrm{C}_{3} \cos \mathrm{cmt}+\mathrm{C}_{4} \sin \mathrm{cmt}\right)$ then $\widehat{Y}(0, \mathrm{t})=0$ implies.
i) $\mathrm{C}_{2}=0$
ii) $\mathrm{C}_{4}=0$
iii) $\mathrm{C}_{3}=0$
iv) $\mathrm{C}_{1}=0$
f) Variance of binomial probability distribution is
i) $r(p q)$
ii) $n p$
iii) $n p^{2} q_{0}$
iv) $n p q^{2}$

Q2) a) Fit asstraight line of the form $y=a x+b$ to the following data.

$x x^{0} 1$	3	5	7	9
y^{2}	1.5	2.8	4.0	4.7

b) The first four moments about the working mean 30.2 of a distribution are $0.255,6.222,30.211$ and 400.25 . Calculate the first four moments about mean also evaluate β_{1} and β_{2}
c) Calculate coefficient of correlation from the following information.

$$
\begin{gather*}
n=10 \Sigma x=40, \Sigma x^{2}=190, \Sigma y^{2}=200, \Sigma x y=150 \Sigma y=40 \tag{5}\\
\hat{\mathrm{OR}}
\end{gather*}
$$

Q3) a) Fit a straight line of the form $y=a x+b$ to the following data.

x	1	3	4	50	6	8
y	-3	1	3	$\cdot 5$	7	11

b) Calculate the first four central moments for the following frequencies.[5]

x	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
y	6	26	47	15	6

c) The regression equations are $8 x-10 y+66=0$ and $40 x-18 y=214$. The value of variance of X is 9 . find
i) Mean values of $x \& y$
ii) Correlation coefficient between $x \& y$

Q4) a) If mean and variance of a binomial distribution are 12 and 3 respectively, find $\mathrm{P}(r \geq 1)$
b) An unbaised coin is thrown 10 times. Find the probability of getting exactly 6 heads and atleast 6 heads using binomial distribution.
c) An aptitude test for selecting officers in a bank conducted on 1000 candidates. The average score is 42 and standard deviation of score is 24. Assuming normal distribution for the score find;
i) The humben of candidates exceed 60
ii) The number of candidates score lies between 30 and 60 [Given/A $(0.75)=0.2734, \mathrm{~A}(0.5)=0.1915$]

OR
Q5) a) If the probability that an individual suffers a bad reaction from a certain injection is 0.001 determine the probability that out of 2000 individuals more than 2 individuals suffer a badreaction.
b) ${ }^{\text {On }}$ an average 20% of the workers in anindustry suffer with a certain diseases. If 12 workers are chosen from-the industry, find the probability that exactly 2 workers suffer from the disease.
c) A die is tossed 60 times and frequency of each face in indicated below

x	1	2	3	4	5	6
y	5	7	5	1.4	13	6

Test the die is fair $\left[\right.$ Given $\left.\chi_{0 ; 0.05}^{2}=11.07\right]$

Q6) a) Find the directional derivative of $\phi=x^{2} y z^{3}$ at the point $(2,,-1)$ in the direction of $3 \bar{i}+4 \bar{k}$
b) Show that $\overline{\mathrm{F}}=\left(y^{2} \cos x+z^{2}\right) \bar{i}+(2 y \sin x) \bar{j}+2 x z \bar{k}$ is irrotational. Find scalar ϕ such that $\overline{\mathrm{F}}=\nabla \phi$
c) Evaluate $\int_{c} \overline{\mathrm{~F}} . d \bar{r}$ along the straight line joining $(0,0)$ and $(3,2)$ where $\overline{\mathrm{F}}=(2 x+y) \bar{i}+(3 y-x) \bar{j}$

Q7) a) Find the directional derivative of $\phi=2 x-y^{3}+z^{2}$ at the point $(2,1,1)$ in the direction of $\bar{i}+\bar{j}+\bar{k}$
b) Show that. (any one)
i) $\nabla \cdot\left[r \nabla \frac{1}{r^{n}} \Theta^{-}=\frac{n(n-2 D}{r^{n+2}}\right.$
ii) $\nabla^{2}\left(\frac{a \cdot b}{r}\right)=0$
c) Using Greens theorem evaluate $\oint_{c} \overline{\mathrm{~F}} \cdot d \bar{r}$ where $\overline{\mathrm{F}}=(2 x-y) \bar{i}+(5 x-y) \bar{j}$ and C is circle $x^{2}+y^{2}=16, z=0$

Q8) a) If $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ represents the vibration of the string of length 1 , fixed at both ends, find solution with the conditions.
i) $u(0, t)=0$
ii) $u(1, t)=0$
iii) $\frac{\partial u}{\partial t}=0$ at $t=0$
iv) $u(x, 0)=a \sin n\left(\frac{8 x}{l}\right)$
(b) Solve $\frac{\partial v}{\partial-1}=K \frac{\partial^{2} v}{\partial x^{2}}$ if
i) $\quad v(0, t)=0$
ii) $\quad v(1, t)=0$
iii) $\quad v_{x}=0$ at $x=0$
iv) $v\left(x_{1} 0\right)=v_{0}$ for $0<x<1$

Q9) a) An infinitely long plane uniform plateis bounded by two parallel edges in the y direction and an end at right angles to them. The breadth of the plate is π. This end is maintained at temperature u_{0} at all points and other edges at zero temperature. Find the steady state temperature function $u(x, y)$
b) Use fourier transform to solve.
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad 0<x<\infty, t>0$
Subject to conditions
i) $\left(\frac{\partial u_{2} \partial \partial^{2}}{\partial t^{\prime}}\right)_{x=0}=0, t>0$
ii) $u(x, 0)=\left\{\begin{array}{cc}x & 0<x<1 \\ 0 & x>1\end{array}\right.$
iii) $u,(x, t)$ is bounded

