Total No. of Questions : 9]

PA-1258

SEAT No. :

[Total No. of Pages: 7

Max. Marks : 70

[5925]-282 S.E. (Production & Industrial Engineering)(Production -S.W/RA) ENGINEERING MATHEMATICS - III (2019 Pattern) (Semester - III) (207007)

Time : 2½ Hours J Instructions to the candidates:

- 1) Question No. \$1 are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of logarithmic tables slide rule, electronic pocket calculator is allowed.
- 4) Assume suitable data, if necessary.

Q1) Choose the correct option:

- a) First four moments of a distribution about the value 4 of the variable are -1.5, 17, -30 and 108. The second moment about mean is [2]
 - i) 14.75
 - iii) 23.75

b) If a random variable X follows binomial distribution with *n* no. of trials p as probability of success & *r* as no. of success then p(X=r) is **[2]**

iv)

i) ${}^{n}C_{r}p^{r}q^{n-r}$ iii) ${}^{n}C_{r}q^{r}$

ii) ${}^{n}C_{r}p^{r}$ iv) ${}^{n}C_{r}p^{r}q$

15.75

12.75

c) Two events A and B are mutually exclusive $P(A) = \frac{1}{5}P(B) = \frac{1}{3}$. Find the probability that either A or B will occur. [2]

i) $\frac{2}{15}$ ii) $\frac{8}{15}$ iii) $\frac{1}{15}$ iv) $\frac{3}{5}$

P.T.O.

- c) For the following distribution, find first four moments about the mean.[5]
 - 2.5 3.0 3.5 5.0 2.0 4.0 x 36 60 90 10 ſ 4 70 -40 OR
- Q3) a) Fit a straight line to the following data. x 0 5 10 15 20 25

17

22

24

[5]

b) First four moments of a distribution about value 5 are, 2, 20, 40 and 50, find first four central moments, $\beta_1 \& \beta_2$ [5]

30

c) From the record of correlation data, variance of x is 9 line of regressions are given by [5] 8x-10y+66=0, 40x-18y=214

Find

- i) Mean values of x and y
- ii) Coefficient of correlation between x and y
- Q4) a) A can hit the target 1 out of 4 times, B can hit the target 2 out of 3 times, C can hit the target 3 out of 4 times. Find the probability the target is hit?

[5]

b) An unbiased coin is thrown 10 times. Find the probability of getting atleast g Heads. [5]

[5925]-282

In a certain examination test, 2000 students appeared in the subject of c) statistics. Average marks obtained were 50% with standard deviation 5%. How many students do you expect to obtain more than 60% of marks, supposing that marks follow normal distribution? [5]

(Given : Area corresponding to 2 is 0.4772)

OR

- An envelope contains 6 tickets with numbers 1, 2, 3, 4, 5, 7. Another **Q5)** a) envelope contains 4 tickets with numbers 1, 3, 5, 7. An envelope is chosen at random and ticket is drawn from it Find the probability that the ticket bears the numbers z or [5]
 - The average number of misprints per page of a book is 1.5. Assuming b) the distribution of number of misprints to be poisson, find number of pages containing more than one misprint if the book contains 900 pages. [5
 - certain The table below gives number of books issued from a certain library on c) [5] the various days of a week.

Days No. of books issued

120 Mon.

Tues. 130

Wed. 110

	9
C	17
0	
N)	

[5925]-282

4

- Thurs. 115 Fri. 135 Sat. 110 Test at 5% l.o.s. whether issuing the book is day dependent $(\text{Given} = X_{5,005}^2 = 11.07)$
- Find the directional derivative of $\phi = 2x^2 + 3y^2 + z^2$ at the point (2, 1, 3) **Q6)** a) along the line $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z-3}{2}$ [5]
 - Show that vector field $\overline{F} = (x^2 yz)\hat{i} + (y^2 xz)\hat{j} \oplus (z^2 xy)\hat{k}$ is irrotational. b) Also find corresponding scalar potential function ϕ such that $\overline{F} = \nabla \phi$ [5]
 - along the curve $+(2xz-y)\hat{j}+z\hat{k}$ Evaluate $\int \overline{F} \cdot d\overline{r}$ for $\overline{F} = 3x$ c) $x = t, y = t^2, z = t^3$ from t = 0 to [5]
- If the directional derivative of $\phi = axy + byz + cxz$ at (1, 1, 1) has maximum Q7) a) magnitude 4 in the direction parellel to X - axis, find the value of a, b, c.

OR

- Show that (any one) b)
 - $\nabla^4\left(e^r\right) = e^r + \frac{4}{r}e^r$ i)
 - ii) $\nabla \left(\frac{\overline{a} \cdot \overline{r}}{r^n}\right) = \frac{\overline{a}}{r^n} \frac{n(\overline{a} \cdot \overline{r})}{r^{n+2}}$

[5925]-282

5

[5]

[5]

c) Evaluate
$$\oint \vec{F} \cdot d\vec{r}$$
 using Green's theorem where
 $\vec{F} = (2x - \cos y)\hat{i} + x(4 + \sin y)\hat{j}$ and c is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z = 0.$ [5]
(28) a) Solve $\frac{\partial u}{\partial t} = k \frac{\partial w}{\partial t^2}$ if $(1 - 1)^{1/4}$
i) $u(0, t) = 0$
ii) $u(0, t) = 0$
iv) $u(x, 0) = \frac{u_0 x}{t} = 0 < x < t = 0$, is constant
b) Solve the wave equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$ [8]
i) $y(0, t) = 0$
ii) $y(0, t) = 0$
iii) $y(\pi, t) = 0$
iv) $y(x, 0) = x, 0 \le x \le \pi$
iv) $y(x, 0) = x, 0 \le x \le \pi$
OR $h = 0$
OR $h = 0$
iv) $y(x, 0) = x, 0 \le x \le \pi$

An infinitely long uniform plate is bounded by two parallel edges in the -**Q9)** a) y - direction and on end at right angles to them. The breadth of the plate is π . This end is maintained at temperature u_0 at all points, other edges as zero temperature. Find steady state temperature u(x, y) If it satisfies $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2}$ = 0[8] Use Fourier tansform to solve b) ∂и $x < \infty$ Under the condition - $\mathcal{U}\left(0,\,t\right)=0$ t > 0 0 < x < 1x > 1 $u(x,0) = \begin{cases} 1\\ 0 \end{cases}$ u(x, t) is bounded. [7] c) A the second strate of the second sec জন্ত