Total No. of Questions : 8]		SEAT No. :	_
PD4719		[Total No. of Pages :	-
	[6404]-225		

B.E. (Mechanical Engineering)

RENEWABLE ENERGY TECHNOLOGIES

(2019 Pattern) (Semester - VIII) (Elective -VI) (402051B)

<i>Time</i> : 2½ <i>Hours</i>]	20 5	[Max. Marks : 70
Instructions to the co	indidatos -	

- Instructions to the candidates:
 - Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8. *1*)
 - Neat diagrams must be drawn wherever necessary. 2)
 - Figures to the right indicate full marks. *3*)
 - *4*) Use of electronic pocket calculator is allowed.
 - Assume suitable data, if necessary. 5)
- **Q1**) a) Explain the following solar cells with neat sketch

[6]

- Single Crystalline -
- ii) Poly Crystalline
- Write a short note on. b)

[6]

- Payback Time and
- Levelized Energy Cost for solar energy generation
- List out and explain the various PV components used in designing PV c) system. [6]

Q2) a) Write a short note on.

[8]

- Factors affecting electricity generated by a solar cell and
- Solar Cell Equation
- Design a standalone PV system for the load specified in the table. [10] b)

Load	Number	Power Rating (Watt)	Usage Hr/day
T.V		100	2 &
Refrigerator	2.0	50	8
Computer	3/	18	500

Find:

- Energy supplied (Wh) by the battery to inverted input considering inverter efficiency = 85 %.
- Considering Depth of Discharge (DOD) of 50 %, calculate the required charge capacity of battery (24V).
- iii) Considering two days of autonomy, calculate battery charge capacity.
- Calculate no. of batteries needed for 24 V system voltage if the available battery configuration is 12 V and 100 Ah.
- Calculate the number of panels of 60 W, for the above case considering 6 sunshine hours of 1000 W/m² day.

Assume battery efficiency = 80 %, Assume controller circuit efficiency = 100%.

P.T.O.

Q 3)	a)	Write a short note on. [6]
		i) Betz coefficient andii) Tip Speed Ratio
		ii) Tip Speed Ratio
	b)	Explain the Horizontal and Vertical axis wind turbines with neat sketch.[6]
	c)	With neat sketch, explain the concept of Upwind and Downwind rotor position for wind turbines. [6]
<i>Q4</i>)	a)	OR List out and explain the components of wind turbine with neat sketch.[8]
۷')	b)	Wind at 1 standard atmospheric pressure and 15°C temperature has a
	U)	velocity of 10 m/s. The turbine has a diameter of 120 m and its operating speed is 40 rev/min at maximum efficiency. Calculate. [10]
		i) Total power density in the wind stream
		ii) Maximum obtainable power density assuming, $\eta = 40 \%$,
		iii) Total power produced in kW and
		iv) Torque and axial thrust. Assume air density as $\rho = 1.226 \text{ kg/m}^3$
Q 5)	a)	Write a short note on. [6]
		i) Yaw control mechanism used in wind turbine
		ii) Solar PV tracking
	b)	Write a short note on.
		i) Site selection for wind farm
		ii) ICT based monitoring and control of wind farm
	c)	Write a short note on effect of dust on PV and suggest few remedies for
	1	it. OR [5]
Q6)	a)	Explain off shore and on shore wind farms providing their advantages and disadvantages. [6]
	b)	List out and explain various components of solar photovoltaic system.[6]
	c)	Explain Pitch controlled and Stall controlled power control for wind turbines. [5]

Q7)	a)	Explain Biogas Digester with neat sketch.	[6]
	b)	Explain following characteristics of biomass:	[6]
		i) Ultimate analysis	
		ii) Proximate analysis and	
		iii) Thermo- gravimetric analysis	
	c)	Differentiate between Aerobic and Anaerobic digestion.	[5]
		OR	
Q 8)	a)	Write a short note on Bio-Diesel.	[6]
	b)	List out and explain various type of biomass.	[5]
	c)	A biomass gasifier is used to run a compression ignition engine.	
		engine operates in the dual fuel mode with 75 % diesel replacement. biomass feeding rate for the gasifier is 170 kg/hr. Calculate the po	
		produced by the engine, if the engine efficiency is 28 % and calor	
		value of biomass is 15500 k.J/kg. Consider efficiency of the gasifie	
		0.70.	[6]
	V		
			3
			¿ÇÍV
		19.16. V	5
		() () () () () () () () () ()	
4	Q		
	~		
	1	6.	
		25 3 S. A.	
[640	4]-2	25 3 S	