Total No. of Questions	:	8]
-------------------------------	---	----

PD4712

SEAT No.:			
[Total	No	of Pages	. 3

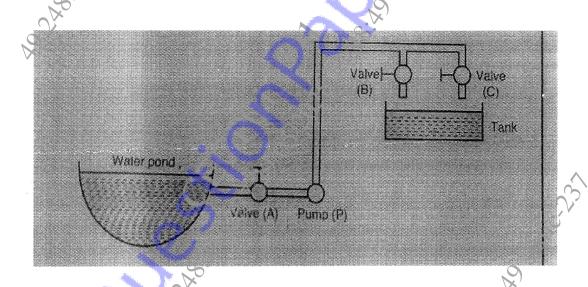
[6404]-218

B.E. (Mechanical Engineering) **QUALITY AND RELIABILITY ENGINEERING** (2019 Pattern) (Semester - VIII) (402050A) (Elective-V)

Time: 2½ Hours] Max. Marks: 70

Instructions to the candidates;

- Solve Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- Draw suitable neat diagrams, whenever necessary. *2*)
- 3) Figure to the right indicate full marks.
- Assume suitable data if required. 4)
- Differentiate between Quality & Reliability. *Q1*) a)


[6]

The failure of ten vehicle brakes are observed to be 43500, 52000, 72000, 84500, 93500, 101000, 111500, 116000 & 123500 miles of operations. Plot the probability density, probability distribution, reliability and the hazard function of the failure time to brakes. [12]

- Define failure with it's classification and modes of failure in detail. **Q2)** a)
 - Explain in detail the term Probability Density Function (PDF) b) Cumulative Distribution Function (CDF). [9]
- Explain with illustration reliability analysis of series, parallel & mixed *03*) a) configuration systems. [8]
 - The three main units connected in series together make an assembly of machine which requires reliability of 0.65. The individual reliabilities of units are 0.70, 0.80 & 0.90 respectively. Explain and find how the reliability of machine should be apportioned among these units with minimum effort technique. [9]

OR

- Q4) a) Explain in detail about Cold, Warm & Hot Standby Redundancy. [8]
 - b) A system have three elements 1, 2 and 3 connected in series with their failure rates of $\lambda_1 = 0.006$, $\lambda_2 = 0.004$, $\lambda_3 = 0.001$ per hour respectively Assuming mission time of 20 hours and system reliability of 0.92, find the reliability of each subsystem to achieve the desired reliability goal.[9]
- Q5) a) What is fault tree analysis (FTA)? Give four basic symbols used in FTA. Explain four points of differences between FTA and failure mode and effects analysis (FMEA) approach.[9]
 - b) Figure shows three valves A, B and C, a pump (P), a pipeline and a tank to collect water pumped from the pond. Construct the fault tree corresponding to the top event no flow of water into the tank. [9]

OR

- **Q6)** a) What is FMECA? Give the procedure of FMECA. State importance of RPN in FMECA with example. [9]
 - b) Draw and explain any five symbols used in fault tree construction. [9]

Q7)	a)	Wri	te a note on:		3		[9]
		i)	Markov model		50		
		ii)	MTBF	9. X			_
		iii)	Reliability Center	ered Mainte	nance (RC	M)	4.
	b)		ine preventive, pr penefits of each ty				
		É		OR		15	
Q8)	a)		ne maintainabilit	•			•
	b)	\sim 1	eam is subjected V/mm² the mean st	i i			
		devi	ation 40 N/mm ² .	S			[9]
		Dete	ermine:		200		
		i)	Reliability of the	Beam			C
		ii)	Minimum Facto	r of Safety			
		iii)	Average factor	fsafety			N S S S S S S S S S S S S S S S S S S S
		4	W.V			8	J. Sp.
			5				5
4	Ó	K	,	+ +	+	3 000	
(ゔ					3	
	*				26.7		
[640)4]-2	218		3	600		