Total No	o. of Questions : 8] SEAT No. :		
PB23			
[6263] 235			
[0203]5235			
B.E. (Mechanical Engineering)			
ELECTRIC AND HYBRID VEHICLE			
C'	2019 Pattern) (Semester - VIII) (402051E) (Elective - VI)		
(2	201) 1 attern) (Semester - VIII) (402031E) (Elective - VI)		
<i>Time</i> : 2	½ Hours] [Max. Marks: 70		
Instructi	ons to the candidates:		
1)	Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.		
2)	Neat diagrams must be drawn wherever necessary.		
3)	Figures to the right indicate full marks.		
<i>4</i>)	Use of electronic pocket calculator is allowed.		
5)	Assume suitable data, if necessary.		
Q1) a)	Describe and illustrate the BCU, their types. [9]		
21) u)			
b)	Explain and estimate the Battery Performance Parameters. [9]		
	ORS		
Q2) a)	Describe and Illustrate the Motors (Prime Mover) Classification,		
	Construction, Working, and Control. [9]		
b)	Explain Battery thermal management system in detail. [9]		
0)	Explain Buttery distribution and series system in detail.		
Q3) a)	Describe and illustrate various electric drive-train topologies and their types		
Q0) u)	for Three - Wheeler application. [9]		
	Tot Times Wheeler application.		
b)	Explain the Power train Components and Sizing Calculation. [8]		
4			

Differentiate between Mechanical Differential and Electric Differential. [8]

Describe and Illustrate the Dynamic equation related to mechanics of vehicle movement.

Q5) a)	Describe and illustrate the Driving dynamics and Comfort as well as Anatomy and Terminology of Car Package.	the [9]
b)	Describe and illustrate the Front/Rear Suspension Systems Design varieties of Electric Vehicle Configuration. OR	for [9]
Q6) a)	Describe and Injustrate the Electrical vehicle design and packaging al with Hip Point/Seating Reference Point.	ong [9]
b)	What is Retrofitting? Describe and illustrate the retrofitting of Two-whe vehicles.	eler [9]
Q7) a)	Explain the Level 1, Level 2, and Level 3 chargers of electric vehicles.	[9]
b)	What are the Requirements for Charging System?	[8]
Q 8) a)	OR Write a note on i) AIS Charging Standards	[9]
	ii) BIS Charging Standards,iii) Charging Infrastructure for Electric Vehicles -EVCI Guidelines	33
b)	Describe and illustrate Hazard/Safety Management of Batteries during/a operations.	after [8]
[6263]-2.	Describe and illustrate Hazard/Safety Management of Batteries during/a operations. *** *** *** *** ** ** ** **	