B.E. (Miechanical)

QUALITY AND RELIABILITY ENGINEERING (2019 Pattern) (Semester - VIII) (402050A) (Elective - V)

Time: 2½ Hours]
[Max. Marks : 70

Instructions to the candidates:

1) Draw suitable neat diagrams, wherever necessary.
2) Figure to the right indicate full marks.
3) Assume suitable data if required.

Q1) a) Explain the following (Any 3) :

1) Reliability
ii) Hazard Rate
iii) Mean Time to failure (MTTFD
iv) Probability density functions/of failure
b) State the importane and afle of the reliability function in an organization. Distinguish between Quality and Reliability of a product.

Q2) a) Explain following probability distributions (Any 2) :
i) Binomial distribution
ii) Normal distribution
iii) Weibull distribution
b) A cinema house gets electric power from a geneator run by a diesel engine. On a given day, the probability that the generator is down (Event A) is 0.025 and the probability that the diesel engine is down (Event B) is 0.04 , what the probability that the cinema house will have power on any given day? Assume that thecóccurrence of event A \& B are independent of each other.
c) Draw \& explain a specimen 'Bath Tüb Curve'.

Q3) a) A system consists of three componeats 1,2 and 3 having failure rates $\lambda_{1}=0.006, \lambda_{1}=0.004$ and $\lambda_{3}=0.001$ per hour respectively. Assuming mission time of 20 hrs . and system reliability of 0.92 , find failure rates as well as reliability of each subsystem for entire mission period by ARINC' method of Reliability Allocation.
b) Calculate the reliability. of the system shown in following Fig. (1). The value shows the reliability of individual components in the system.

OR
Q4) a) A system consists of three units connected in series, with reliabilities $\mathrm{R}_{1}=0.70, \mathrm{R}_{2}=0.80 \mathrm{amd} \mathrm{R}_{3}=0.90$. It is desired that the reliability of the system to be 0.65 . How should this be apportioned among three 8 units by Minimum Effort Method?
b) Evaluate the Reliability of System shown in following Fig. (2) By Conditional Probabinity Approach.

Fig. (2)

Q5) a) What is FMECA? Give the procedure of FMECA. State importance of RPN in FMECA, with example.
b) Fig. (3) shows three valves A, B and C , a pump (P), a pipeline and a tank to collect water pumpedfrom the pond. Construct the fault tree corresponding to the top event "No Flow of Water Into The Tank".

Q6) a) Write Short notes on (Any 2)
i) Fault Tree Analysis
ii) Ishikawa for failure eepresentation (Cause Effect Diagram)
iii) Symbols used in ETA
b) For an emergency operation theatre in a hospital, the power is obtained from the main city supply through a transformer connected in seeries. To ensure an uninterupted supply, an auxiliary generator is atso used with a suitable switch over. Refer Fig. (4). The probability of fálure of the main city supply is 0.01 and transformer reliabolity is ${ }^{\circ} 0.996$. The auxiliary power generator has a reliability factor of 0.99 . Draw a block diagram for the system. Construct the fault tree and calculate reliability of the system.

Fig. (4)

Q7) a) Define Maintainability and Availability For the system from the following data collected at a plant.

Mean time before failure: 35 Hes.
Mean time to repair : 10 Hrs .
Administrative and logistic time : 50\% of MTTR
Calculate operational availability and inherent availability of the plant.
b) A beamis subjected to mean stress $180 \mathrm{~N} / \mathrm{mm}^{2}$ and standard deviation $20 \mathrm{~N} / \mathrm{mm}^{*}$. The mean strength of beam material is $280 \mathrm{~N} / \mathrm{mm}^{2}$ and standard deviation $40 \mathrm{~N} / \mathrm{mm}^{2}$. (Given : for $\mathrm{Z}=-2.24$, Area $=0.4875$)

Determine :

i) Reliability of the beam.
(ii) Minimum factor of safety.
iii) Average factor of safety.

Q8) a) What is meant by Accelerated test in evaluating Reliability? Give at least six point differences beyween Highly Accelerated Life Testing (HALT) and Accelerated Life Testing (ALT).
b) The following data is obtained while Accelerated life testing of a rubber

Find out the reliability and plot the variation of reliability against time using :
i) Mean ranking method and
ii) Median ranking method

