B.E. (Mechanical)
 QUALITY AND RELIABILITY ENGINEERING
 (2019 Pattern) (Sémesteř- VIII) (Elective - V) (402050 A)

Time : $\mathbf{2 ¹ ⁄ 2}^{1 ⁄ 2}$ Hours]

Instructions to the candidates:

1) Answer Q. 1 Or Q.2, Q.3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Draw suitable neat didgrams, whenever necessary.
3) Figures to the righ indicate full marks.
4) Assumie suitabledata if necessary.

Q1) a) Explaín following basic concepts of Reliability (Any 4):
i). Failure Rate ($\lambda(\mathrm{t})$)
ii) Hazard Rate ($\mathrm{h}(\mathrm{t})$)
iii) MTTF
iv) MTBF
v) Probability Density Function (PDF)
vi) Cumulative Distribufion Function (CDF)
b) What is Reliability? Distribution between Quality and Reliabilityof a product. Explain the eauses of Unreliability in mechanical systemr.

Q2) a) What are the different modes of Failure? Draw \& explain a specimen 'Bath Tub Curve’ showing various life characteristié phases/regions.[8]
b) The failures of brakes of Ten Automobites are observed to be 43500 , $52000,72000,84500,93500,101000,11500,116000 \& 123500$ miles of operations. Plot the probability density,' probability distribution, reliability and the hazard function of the faylure time to brakes.

Q3) a) Calculate the reliability of the systernshown in following Fig. (1). The value shows the reliability of individual components in the system. [10]

Fig.(1)
b) A systemcgonsists of three components 1,2 and 3 hawing failure rates $\lambda_{1}=0.006, \lambda_{2}=0.004$ and $\lambda_{3}=0.001$ per hour respectively. Assuming missiontime of 20 hrs . and system reliability of 0.92 , find failure rates as well às reliability of each subsystem for entire mission period by 'ARINC' method of Reliability Allocation.

Q4) a) Evaluate the Reliability of System shown in following Fig. (2) By Conditional Probability Approach.

b) A system consists of three units connected in series, with reliabilities $R_{1}=0.70, R_{2}=0.80$ and $R_{3}=0.9$. It is desiredthat the reliability of the system to be 0.65 . How should this be apportioned among three units by Minimum Effort Method?

Q5) a) What is FMECA? Give the procedure of FMECA. State importance of RPN in FMECA, with example.
b) Fig. (3) shows three valves, $\mathrm{A} \% \mathrm{~B}$ and C , a pump (P), a pipeline and a tank to collect water pumped from the pond. Construct the fault tree corresponding to the toperent "No Flow of Water Into The Tank". [9]

Q6) a) Write Short notes on(Any 2):

i) Fault Tree Analysis.

ii) Ishikawa for failure representation (Cause Effect Diagram)
iii) Symbols used in FTA
b) For an emergency openation theatre in a hospital, the power is obtained from the main city supply through a transformer connected is series. Te ensure an uninteryupted supply, an auxiliary generator is also used withá suitable switch over. Refer Fig. (4). The probability of failure of the main city supply is 0.01 and transformer reliability is 0.996 . The auxiliary power generator has a reliatility factor of 0.99 . Draw a block diagram for the system. Construetthe fault tree and calculate reliability of thesystem.[9]

Q7) a) Define Maintainability and Availabilify for the system from the following data collected at a plant.
Mean time before failure: 35 Hrs ,
Mean time to repair: 10 Hrs.
Administrative and logistic time: 50\% of MTTR
Calculate operational availability and inherent availability of the plant.
b) A beam is subjected te mean stress $180 \mathrm{~N} / \mathrm{mm}^{2}$ and standard deviation $20 \mathrm{~N} / \mathrm{mm}^{2}$. The means strength of beam material is $280 \mathrm{~N} / \mathrm{mm}^{2}$ and standard deviation $40 \mathrm{~N} / \mathrm{mmi}^{2}$. (Given: for $\mathrm{Z}=-2.24$, Area $=0.4875$)
[10] Determine;
i) Reliability of the beam.
ii) Minimum factor of safety.
iii) Average factor of safety.

Q8) a) What is meant by Accelerated test in evaluating Reliability? Give at least six point differences between Highly, Accelerated Life Testing (HALT) a and Accelerated Life Testing(ALTD)
b) The following data is obtained while Acecelerated life testing of a rubber Gasket:

Failure No.	1	2	3	4	5	6	7	8	9
MTTF(hrs.)	24	22	12	28	35	38	30	19	25

Find out the reliability and piot the variation of reliability against time using:
i) Mean ranking metfifod and
ii) Median rankingmethod

4 4 4

