Total No. of Questions : 4]	SEAT No.:
PE-198	[Total No. of Pages : 3

[6580]-558

B.E. (Mechanical) (Insem.) HEATING VENTILATION AIR CONDITIONING & REFRIGERATION

(2019 Pattern) (Semester - VII) (402041)

Time: 1 Hour] [Max. Marks: 30 Instructions to the candidates:

- 1) Answer O1 or O2, O3 or O4.
 - 2) Neat diagrams must be drawn wherever necessaly.
 - 3) Figures to the right side indicate full marks.
 - 4) Use of electronic pocket calculator is allowed.
 - 5) Use of steam table and psychrometric chart is allowed.
- Q1) a) Explain the concept of DART in air refrigeration cycles and compare various air refrigeration cycles using DART.[6]
 - b) The following data refers to a bootstrap air cycle evaporative refrigeration cycle used for an evaporator to take 20 tonnes of refrigeration load: [9] Ambient air temperature = 15°C

Ambient air pressure = 0.8 bar

Mach number of flight $\neq 1.2$

Ram efficiency = 90%

Pressure of air after main compressor = 4 bar

Pressure of air after secondary compressor = 5 bar

Isentropic efficiency of main compressor = 90%

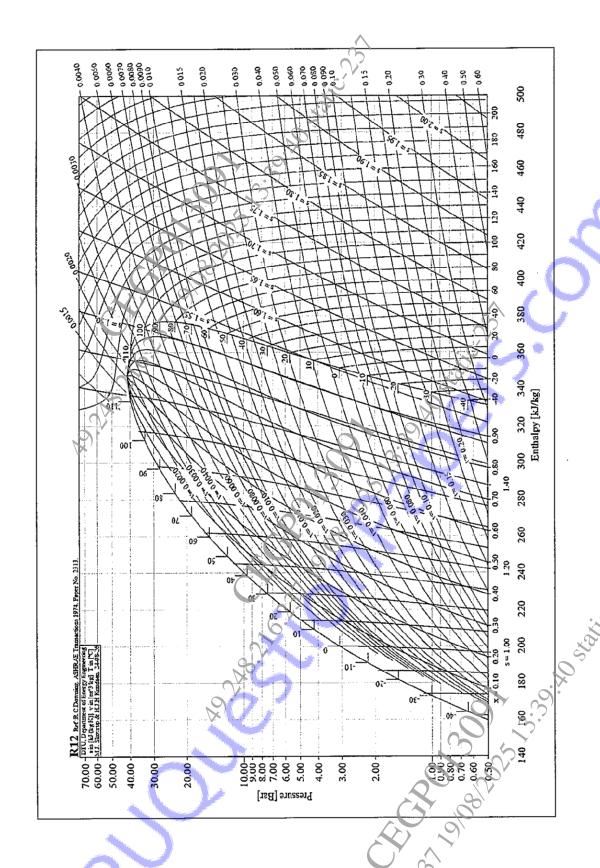
Isentropic efficiency of secondary compressor = 80%

Isentropic efficiency of cooling turbine = 80%

Temperature of air leaving the first heat exchanger \Rightarrow 170 °C

Temperature of air leaving the second heat exchanger = 155 °C

Cabin pressure = 1 bar :


Cabin temperature = 25 °C

Find:

- i) Draw neat temperature entropy plot of given system
- ii) / Mass of air required to take cabin load
- iii) Power required for the refrigeration system
- iv) C.O.P. of the system

				OR (
Q 2)	a)	Explain the following properties of refrigerants [8					[]
		i) Late	nt heat of vap	orization			
		ii) Boili	ing point	· Ko			
		iii) Misc	bibility				
		iv) Spec	rific heat of v	apour refrigera	ant	1	4
	b)	Explain B	oot -Strap air	r refrigeration	system with T-S	diagram [7]
		, G	108			0	
Q 3)	a)	(-)		•	Intercooling a	nd sub cooling by	•
		, \	ooling source		٠,٧	[6	
	b)					rree evaporators of the at -10°C and the	
		vapors w	ithin the con	npressor are o	dry and saturate	ed. The condense	r
		cooled to		he liquid refrig	cerant leaving th	e condenser is sul [9]	
				oie Compression	m. Find	L ²	,
					wing through ea	ach evaporator	
				red to drive the			
			of the system		• Compressor		
		m) cor	of the system	OR			1
Q4)	a)	Explain	with scheme		diagram a coi	mplete two stag	e
۷-7	u,	compress			•	ntercooler and ga	S
		removal.	× V	1		(6)	
	b)	With the n	eat diagram E	xplain working	g of Cascade retri	igeration system.[9]
		(00,	201	
					10 Mg),	
)				
		\mathcal{Q}^{-}			6.7		
geti	<)					
					X		

[6580]-558

