B.E. (Mechanical Eagineering) (Insem)

 HEATING VENTILATIỌN AIR-CONDITIONING AND REFRIGERATION(2019 Pattern) (Semester-VII) (402041)
Time : 1 Hour]
[Max. Marks : 30
Instructions to the candidates?

1) Solve Q.Tor Q.2, Q. 3 or Q.4.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Use of electronic pocket calculator is allowed.
5) Assume suitable data, if necessary.

Q1) a) Explảin physical requirements while selecting, a eefrigerant.
b) Aboot-strap cooling system of 10 TR is, used inan aeroplane. The ambient \star air temperature and pressure are $15^{\circ} \mathrm{C}$ and 0.85 bar respectively. The pressure of air increases to 1 bardue 10 isentropic ramming action of air. The pressure of air discharged from the main compressor is 3.5 bar. The discharge pressure of air from the auxiliary compressor is 4.25 bar. The isentropic efficiency of eath of the compressors is 90%, while that of the turbine is 85%. The effectiveness of both the heat exchangers is 0.7 . If the cabin is to be maintaned at $22^{\circ} \mathrm{C}$ and the pressure in the cabin is 0.9 bar.
Take $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \gamma=1.4$. Draw T-s diagram. Find:
i) Mass of air circulated
ii) Power of the system and
iii) COP of the system

OR
Q2) a) Explain Recovery, Recycling and Reclaimiñg of reffigerant.
b) A simple air refrigeration system is used for an afreraft to take a load of 20 TR. The ambient pressure and temperatureare 0.9 bar and $22^{\circ} \mathrm{C}$. The pressure of air is increased to 1 bar due to isentropic ramming action. The air is further compressed in a compressor to 3.5 bar and then cooled in a heat exchanger to $72^{\circ} \mathrm{C}$. Finally, the air is passed through the cooling turbine and then it is supplied to the cabin at 1.03 bar. The air leaves the
cabin at a temperature of $25^{\circ} \mathrm{C}$. Assuming the isentropic efficiency of compressor and turbine as 80% and 75%.
Take $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \gamma=1.4$ Draw T-s diagram.
Find:
i) Mass of air circulated ζ
ii) Power of the systena and
iii) COP of the system.

Q3) a) What is the necessity of a multistage compression system? Enlist advantages of raultistage compression system.
b) A two slage compression system with flash gas removal having capacity of 30 TR wifh is used to achieve a minimum temperature-of - $20^{\circ} \mathrm{C}$. System uses R22 refrigerant. When the ambient temperatureis $40^{\circ} \mathrm{C}$. The flash tank sepárates dry vapour at 5 bar. Liquid refrigerant trom the flash tank is expanded upto $-20^{\circ} \mathrm{C}$. Assuming that the refrgerant at the exit of the evaporator is dry and the liquid refrigerant leaving the condenser is saturated liquid. Compression in each compressor is isentropic. Draw ${ }^{P}$-h diagram.
[10]
Calculate:
i) Mass flow rate in each cylinder
ii) Power required to run the system
iii) COP of the system.

Use the P-h chart provided.

OR

Q4) a) Explain with schematic and P -h diagram a complete two stage compression system with flash chamber acts as intercooler and gas removal.
b) A multi evaporator refrigeration system with R22 as a refrigeeant uses two evaporators of capacities 20 TR at $0^{\circ} \mathrm{C}$ and 30 TR at $-20^{\circ} \mathrm{C}$ with a single compressor and individual expansion valve. The condenser is operating at $40^{\circ} \mathrm{C}$ temperature. The exit condition of refrigerant from each evaporator is saturated vapour and refrigerantleaving the condenser is saturated liquid. Draw P-h diagram.
Find:
i) Mass of refrigerant circulated in eache evaperator
ii) Power required to drive the system
iii) COP of the system.

Use the P-h chart provided.

