[6188]155
 B.E. (Mechanical) (Insem)
 DYNAMICS OF MACHINERY (2019 Pattern) (Semester - VII) (402042)

Time : 1 Hour 15 mintes]
[Max. Marks : 30
Instructions to the candidates.

1) Answer Q. 1 or Q.2, Q. 3 or Q.4.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to theright side indicate full marks.
4) Assume suitable data wherever necessary.

Q1) a) Whate is meant by primary and secondary balaticing of reciprocating masses?
b) A rotating shaft carries four disturbing massee $20 \mathrm{~kg}, 16 \mathrm{~kg}, 18 \mathrm{~kg}$ and 14 kg at radii $60 \mathrm{~mm}, 70 \mathrm{~mm}, 80 \mathrm{~mm}$ and 70 mm respectively. The masses m_{2}, m_{3} and m_{4} revolve inplanes $80 \mathrm{~mm}, 160 \mathrm{~mm}$ and 280 mm from plane of m_{1} and locatedat $60,135^{\circ}$ and 270° respectively measured in counter clockwise director from m_{1}. If shaft is dynamically balanced by two masses, both logaterat 50 mm radii and located midway between $\mathrm{m}_{1} \& \mathrm{~m}_{2}$; and midway petvegen $\mathrm{m}_{3} \& \mathrm{~m}_{4}$. Determine magnitude and angular position of balancing masses.

Q2) a) Explain the method direct and reverse cranks to determine the unbalance forces in radial engines.
b) A shaft carries four masses in parallel planes A, B, Gand D iethis order along its length. The masses at B and C are 18 kg aind 12.5 kg reșpectively, and each has an eccentricity of 60 mm . The masses at A and D have an eccentricity of 80 mm . The angle betweén the masses at B and C is 100° and that between the masses at B and A is 190°, both being measured in the same direction. The axial distance' between the planes A and B is 100 mm and that between B and C is 200 mm . If the shaft is in complete dynamic balance, determine:
i) The magnitude of the masses at A and D
ii) The distance between planes A and D
iii) The angular position of the mass at D

Q3) a) Explain the effect of gyroscopic coupte on two wheeler.
b) An areoplane makes a completehálf circle of 90 m radius, towards right when flying at $400 \mathrm{~km} / \mathrm{hr}$. The rotating engine and the propeller of the plane have a mass 500 kg with a radius of gyration of 40 cm . The engine rotates at 3000 rom, in anticlockwise direction when viewed from the front end. Find the gyrosicopic couple on plane and state its effect on it.

OR
Q4) a) Derive from the first principles an expression for the gyroscopic couple.
b) A ship is propelled by a turbine rotor having a mass of 500 kg and speed of 2100 rpm . The rotor has radius of gyration of 500 mm and rotates in clockwise direction when viewed from the stern Determine gyroscopic couple and its effect in following conditions:
${ }_{\text {i }}$ The ship takes left turn at raciuts of 800 m at speed of $30 \mathrm{~km} / \mathrm{hr}$.
ii) The ship pitches 6^{0} above and 6^{6} Delow the horizontal position. The bow is descending with maximum velocity. The pitching motion is simple harmonic with a periedic time of 20 sec .
iii) The ship rolls and atcertain instant it has angular velocity of $0.03 \mathrm{rad} / \mathrm{sec}$ clockwise when viewed from stern.

