B.E. (Mechanical)

HEATING, VENTHATION, AIR CONDITIONING AND REFRIGERATION
 (2019 Patterní) (Semester - VII) (402041)

Time: 2½ Hours
[Max. Marks : 70
Instructions to the candidates:

1) Solve Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of scientific calculator is allowed.
5) Assume Suitable data, if necessary.

Q1) a) Explain with a neat sketch Thermostatic Expansion Valve.
b) Explain with a neat sketch Low Pressure (LP) cut off used in VCR cycle.
c) Distinguish between the air ceoled and water cooled condensers. [5] OR

Q2) a) Explain with neat sketch flooded type evaporator.
b) Explain with neat schematic the frost control circuit used in VCR eycle.
c) Explain with neatsschematic CO_{2} transcritical cycle.

Q3) a) Explain load calculations factors for air conditioning.
b) Atmospheric air at $30^{\circ} \mathrm{C}$ dry bulb temperature and 75% relative humidity, enters a cooling coil at a rate of $200 \mathrm{~m}^{3} / \mathrm{min}$. The coil dew point temperature is $14^{\circ} \mathrm{C}$ and the by-pass factor of the coil is 0.1 . Determine :
i) The temperature of air leaving the cooling coil;
ii) The capacity of the cooling coil in $T R^{\circ}$ and in kW ;
iii) The amount of water vapour remegved per minute; and
iv) The sensible heat factor for the process.

Q4) a) Explain the terms:
i) GRSHF
ii) BPF
iii) ERSHF
b) A conference rogm for sitting 100 persons is to be maintained at $22^{\circ} \mathrm{C}$ DBT and 60% relative humidity. The outdoor conditions are $40^{\circ} \mathrm{C}$ DBT and $-27^{\circ} \mathrm{C}$ WBT. The various loads in the auditorium are as follows
i) Sensibles and latent heat loads per person 80 W and 50 W respectively;
ii) Lights and fans, 15000 W ;
iii) Sensible heat gain through glass ceiling etc. 15000 W .
iv 5 The air infiltration is $20 \mathrm{~m}^{3} / \mathrm{min}$ and fresh air supply is $100 \mathrm{~m}^{3} /$ min.
$\star_{\text {v) Tho }}$ Twird of recirculated room ainånd one-third of fresh air are mixed before entering the cooling coil.
vi) The bypass factor of the coil iso.1.

Determine :
a) Apparatus dew poict,
b) Grand tota heatorad and
c) Effective roonnsensible heat factor

Q5) a) What is infiltration and Ventilation? What are different Methods of Infiltration?
b) A circular duct of $\phi 400 \mathrm{~mm}$ is selected to carry air at a velocity $440 \mathrm{~m} / \mathrm{min}$. If duct is replaced by rectangular duct of aspect ratio 1.5 . Find the size of rectangular duct for equal friction when;
i) Velocity in two Duct is same.
ii) Discharge in two Duct is same.

If $\mathrm{f}=0.015$, Find the pressure loss per 100 m length of Duct. Take density of air $=1.15 \mathrm{~kg} / \mathrm{m}^{3}$.

OR

Q6) a) Explain Natural Ventilation and Mechanical Ventilation.
b) Using Equal friction method, determine the duct diameter and velocity for section $A B, B D$ and $B C$ Assume velocity in the main duct $\mathrm{AB}=600 \mathrm{~m} / \mathrm{min}$. Also Calculate maximum pressure drop in the duct system. Distance $\mathrm{AB}=30 \mathrm{~m}$, Distance $\mathrm{BC}=30 \mathrm{~m}$ and Distance $\mathrm{BD}=10 \mathrm{~m}$. Refer the figure as given below.
[10]

Q7) a) Explain with neat sketch winter Air conditioning system.
b) Draw and Explain water to water heat pump circuit.
c) Write a short note on solid packed tower.

OR

Q8) a) Explain with neat sketch All water system.
b) Write a short note on Sorbents and Desiccants.
c) Write a short note on Radiant cooling.

Friction Chart for Cincelar Ducts

