SEAT No. : \square
[Total No. of Pages: 4

B.E. (Mechanical) (Semester - VII) TURBO MACHINERY (2019 Pattern) (402043)

Time : 2 Hours]

Instructions to the candidates:

1) Answer Q. 1 or $Q .2, Q .3$ or Q.4, Q. 5 or Q.6, Q.7or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right of each question indicate full marks.
4) Assume suitable data wherever necessary and mention the same clearly.
5) Use of steam tables, Mollier chart and calculator is aifowed.

Q1) a) \times Sketch Pelton wheel bucket and exp ain the effect of its size, shape and number on its function.
b) The external and internal diameters ofan inward flow reaction turbine are 2 m and lm respectively. The head on'the turbine is 65 m . the width of the vane at inlet and outlet are same and equal to 0.25 m . The runner vanes are radial at inlet and a scharge, is radial at outlet. The speed is 220 rpm and the discharge is $6 \mathrm{~m}^{3} / \mathrm{sec}$.

Determine
i) The vane angle at outlet of the runner and guide blade angle at inlet.
ii) The hydraulic efficiency.

Q2) a) Explain the following terms.
i) Specific speed
ii) Run away speed
iii) Degree of reaction
b) A jet of water moving with $\mathrm{V} \mathrm{m} / \mathrm{s}$ strikes at the centre of a curved vane which is moving with $\mathrm{u} \mathrm{m} / \mathrm{s}$. If the outgoing jet makes an angle θ with the incoming jet, prove that,
i) Maximum efficiency, $\eta_{\max }=\frac{8}{27}(1+\cos \theta)$
ii) Blade speed, $u=v / 3$

Q3) a) Whattis compounding of steam turbine? Explain any one of the following.

i) Velocity compounding
ii) Pressure compounding
b) Steam enters an impulse wheel having a nózzle angle of 20° at a velocity of $450 \mathrm{~m} / \mathrm{s}$. The exit angle of moving blades is 20° and relative velocity of steam may be assumed to remain constant over the moving blades. If the blade speed is $185 \mathrm{~m} / \mathrm{s}$,
determine:
i) Blade angle at inlet
ii) Work done $/ \mathrm{kg}$ of steam
iii) Power developed when the turbine is supplied with 1.8 kg of steam
iv) Diagram efficiency

OR

Q4) a) Show that for Parson's Reaction turbine the degree of reaction is 50%
b) Following data refer to the single row of impulse steam turbine mean diameter of the blade ring $=1.1 \mathrm{~m}$, Speed $=3000 \mathrm{rpm}$, Nozzle
angle $=17$ deg., ratio of blade velocityto the steam velocity $=0.45$, blade friction factor $=0.82$, Blade angle at exit is less by 3 deg to that at inlet, steam mass flow rate $=10.2 \mathrm{~kg} / \mathrm{s}$. Draw a velocity diagram and find the following.
i) Blade angles at inlet and outlet
ii) TangentiaTrorce
iii) Axial force
iv) Pômer developed.

Q5) a) Explain NPSH in centrifugal pump.
b) A Gentrifugal pump running at 950 rpm is working against a head 20 m . The external diameter of the impeller is 460 mm and outlet width is $\times 50 \mathrm{~mm}$. If the vane angles at outlet $1 \mathrm{~s} 40^{\circ}$ and manometric efficiency is 75%. Determine the following
i) Flow velocity at outlet
ii) Absolute velocity d water leaving the vane
iii) Angle made by the abselute at outlet with the direction of motion at outlet
iv) Rate of flow through the pump

Specific speed?
OR
Q6)
a) Explain various efficiencies of a centrifugal pumps.
b) A Centrifugal pump having outer diameter equap to two times inner diameter and running at 1250 rpm works agàinsta total head of 80 m . The velocity of flow through the impeller is constant and is equal to $3 \mathrm{~m} / \mathrm{s}$.

The vanes are set back at width at anangle of 30° at outlet. If the outer diameter of the impeller is 600 mm and width at outlet is 50 mm . Determine the following:
i) Vane angle at inlet
ii) Work done per second by
iii) Manometricefficiency

Q7) a) Differentiate between centrifugal compressor and axial flow compressor.
b) Air at a temperature of 300 K flows in a centrifugal compressor running at 18500 rpm . The other data is given as follows :
i) Isentropic total head efficiency $=75 \%$
ii) The temperature rise of air passing through the compressor iii) 0° The static pressure ratio

Aissume that the absolute velocitios of air atinlet and exit of compressor are same. Take $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.

Q8) a) Explain Construction and working of centrifugal compressor with neat diagram.
b) The impeller of the centrifugal compressor has the inlet and outlet diameter of 0.3 and 0.6 m respectively. The intake is from the atmosphere at 100 kPa and 300 K , without any whirl component. The outlet blade speed is 11000 rpm and velocity of flow is constant at $125 \mathrm{~m} / \mathrm{s}$. If the blade width at inletis 6 cm , determine the following :
i) Specific work
ii) Exit pressure
iii) Mass flow rate
iv) Power required to compressor if the overall efficiency is assumed to be 75%.

