B.E. (Mechanical Engineering) OPERATION RESEARCH

(2019 Pattern) (Semester - VII) (402045D) (Elective - IV)

Time: 2½ Hours]
[Max.Marks: 70
Instructions to the candidates:

1) Answer Q1 orQ2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Answers inone answer books.
3) Figures to the right indicate full marks.
4) Assumes Suitable data, if necessary.

Q1) a) Lse Simplex method to solve the following PPP.
Maximize $Z=2 X_{1}+X_{2}$
Subject to Constraints

$$
\begin{aligned}
& 4 X_{1}+3 X_{2} \leq 12 \\
& 4 X_{1}+X_{2} \leq 8 \\
& 4 X_{1}-X_{2} \leq 8 \\
& X_{1}, X_{2} \geq 0
\end{aligned}
$$

b) Write the generalised syntay of LPP and discuss the following terms n° related to LPP.
i) Objective function
ii) Constraint surface
iii) Feasible and infeasible points
iv) Optimum selútion

OR

Q2) a) Use Graphical method to solve the following LPP.
Minimize $Z=10 X_{1}+4 X_{2}$
Subject to Constraints

$$
\begin{aligned}
& 3 X_{1}+2 X_{2} \geq 60 \\
& 7 X_{1}+2 X_{2} \geq 84 \\
& 3 X_{1}+6 X_{2} \geq 72 \\
& X_{1}, X_{2} \geq 0
\end{aligned}
$$

b) Explain with the help of example generalized syntax and various terms involved in the LPP.

Q3) a) Discuss the following related to theetransportation model :
i) Feasible solution
ii) Optimum Solution
iii) Non-degenerate Basic feasible Solution
iv) Degeneratebasic Feasible Solution
b) Find out the micial feasible solution by Vogel's Approximation Method (VAM).

Stores

I	II	III	$\frac{\text { IV }}{13}$
21	16	15	
17	18	14	23
32	27		41
6			15

Q4) a) An airline company has drawn up anew flight schedule that involves five flights. To assist in alfocating five pilot to the five flights, it has asked them to state their preference scores by giving each flight a number out of 10 . The higher the number, the greater is the preference. A few of these flights are unsuitable to some pilots, owing to domestic 0 reasons. These have been marked wit " X "

Flight Number

A

B

10	II	III	IV	V
-8	2	X		4
10	9	2	8	
5	4	9		X
3	6			7
5	6	10	04	5

What should be the allocation of the pibts inorder to meet maximum preference?
b) Differentiate between assignment and transportation problem.

Q5) a) A bank has decided to modernize its@ffice .The major elements of the project are as follows.

| Activity | Description | Predecessor |
| :---: | :--- | :---: | :---: |
| Activity | | | Duration (Days)

i) Draw an arrow diagram for this project ${ }^{\circ} \mathrm{O}$
ii) Find out the critical path
iii) For each non-critical activity find eut the total, free and independent float or Slacks.
b) Explain in brief Following (Any 3):
i) Gradual failure
ii) Sudden failure
iii) Progressive failure
iv) Retrogressive failure
v) Random failure

OR

Q6) a) A truck owner finds from his past records that the maintenance cost per year of a truek whose purchase price is Rs. 8,000 are as follows :

Year (C)	61	2	3	4	5	6	7	8
Maintenanced Cost (Rs)	1000	1300	1700	2000	2900	3800 2	4800	6000
Resale price (Rs)	4000	2000	1200	600	500	400	400	400

Determine at which time it is profitable to replace the truck.
[10]
b) Differentiate between CPM and PERT and also discuss various floats xinvolved in the in CPM analysis of network.

Q7) a) A company has five salesmen who have to be allocated to four marketing zones. The return (profit') from each zone depends upon the numbers of salesman voiking in that zone. The expected return for different numbers of salesman in different zones, as estimated from the past record, are given in thefollowing table. Determine the optimum allocation policy. (Use DP)

Number of salesman	Marketing Zones		
	Zone I	Zone 2	Zone 3
1	x	45	35
2	60	45	52
3	70	52	54
4	79	72	60
5	90	82	70
6	98	93	82
7	105	983	95
8	100	1100	102
9	90	100	110

b) Write short note on Monto Carlo Sindulation.

Q8) a) A salesman located in a city A decided to travel to city B. He knew the distances of alternative routes from city A to city B. He then drew a highway network map as shown in following figure. The city of origin A, is city 1 . The destination city B is city 10 . Other cities through which the salesman, will have to pass through are numbered 2 to 9. The arrow representing routes between cities and distances in kilometres are located oneach route. The salesman problem is to find the shortest route that covers all the selected cities from A to B. The time for each activity is given (1n) the table. (Solve by using Dynamic programming).

b) Explain in brief various steps involved in the simulation.

