SEAT No. : \square

Heating, Ventilation, Airc Conditioning and Refrigeration (2019Pattern) (Semester - VII) (402041)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Solve Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of Scientific Calculator is allowed.
5) Assumie Suitable data if necessary.

Q1) a) Explain with neat sketch the flooded type evaporator.
b) Explain with neat schematic diagram the frost control circuit used in VCR cycle.
c) Explain with neat schematio CO_{2} trans critical cycle.

Q2) a) Explain with aneatsketchThermostatic Expansion Valve.
b) Discuss the following terms used in thermodynamics analysis of Simple Ejector Refrigeration Cycle.
i) Entrainment Ratio
ii) Entrainment efficiency
iii) Nozzle Efficiency
c) Explain with a neat sketch Low Pressure (IP) cotoff used in VCR cycle.[6]

Q3) a) Explain load calculations factors for ait conditioning. (any four)
b) The air-handling unit of an air-conditioning plant supplies a total of 4500 cmm of dry air which comprises by weight 20% fresh air at $40^{\circ} \mathrm{C}$ DBT, $27^{\circ} \mathrm{C} \mathrm{WBT}$, and 80% recirculated air at $25^{\circ} \mathrm{C}$ DBT and $50 \% \mathrm{RH}$. The air leaves the cooling eoil at $13^{\circ} \mathrm{C}$ saturated state. Calculate the following[10]
i) Total cooling load, and
ii) Room heat gain.

Q4) a) Explaind the terms:
i) GRSHF
ii) BPF
iii) ERSHF
b) ${ }^{*}$ A conference room for sitting 100 persons is to be maintained at $22{ }^{\circ} \mathrm{C}$ DBT and 60% relative humidity. The outdoor conditions are $40^{\circ} \mathrm{C}$ DBT and $27^{\circ} \mathrm{C}$ WBT. The variousioads inthe auditorium are as follows: [12] Sensible and latent heatloads per person 80 W and 50 W respectively; lights and fans, 15000 W
sensible heat gain through glass ceiling etc. 15000 W .
The air infiltration is $20 \mathrm{~m}^{3} / \mathrm{min}$ and fresh air supply is $100 \mathrm{~m}^{3} / \mathrm{min}$.
Two-third of recirculated room air and one-third of fresh air are mixed before entering the cooling coil.

The bypass factor of the coil is 0.1 .
Determine
i) Apparatus dew point,
ii) Grand total heat load and
iii) Effective room sensible heat factor.

Q5) a) What is infiltration and Ventilation? What are different Methods of Infiltration?
b) A circular Duct of 400 mm is selected to carry air at a velocity $440 \mathrm{~m} / \mathrm{min}$. If duct is replaced by rectangutiar Duct of aspect ratio 1.5. Find the size of rectangular Duct for equal friction when ;
i) Velocity in troo Ductis same.
ii) Discharge in two Duct is same.

If $f=0.015$, Find the pressure loss per 100 m length of Duct. Take density of air $=015 \mathrm{~kg} / \mathrm{m}^{3}$
c) Write anote on FAN Law, List the different types of fans used in air conditioning system, state applications.

Q6) a) ExplainNatural Ventilation and Mechanical Ventila ion
b) In the air duct system, as shown figure below: air enters at A with a static pressure of 7.5 mm of water. Thebranch B is 15 m long and delivers $120 \mathrm{~m}^{3} / \mathrm{min}$. The branch at C is 22 s . m long and delivers $140 \mathrm{~m}^{3} / \mathrm{min}$. At the end D of the main duct, the air delivered is $200 \mathrm{~m}^{3} / \mathrm{min}$. Using friction chart and equal pressure drepmetheddetermine the diameter and velocity pressure in lengths $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{BE}, \mathrm{CF}$ Duct sections. Consider friction losses only.
c) Define the following as applied to "Air Distribution System" Intake, Outlet, Grille, Register, Diffuser, Throw and Primary.Air.

Q7) a) Explain with neat sketch winter Air ceaditioning system.
b) Draw and Explain water to water héat pump circuit.
c) Write a short note on solid packed tower.

Q8) a) Explain withneat sketch All water system.
b) Write a short note on Sorbents and Desiccants.
c) Write a short note on Radiant cooling.

Friction Chart for CircularDucts

