1) Aniswer Qbgr Q2, Q3 or Q4.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Use of Steam Tables, Mollier charts and electronic pocket calculator is altawed.
5) Assume suitable data if necessary.

Q1) a) Explain the concept of DART in air refrigeration cycles and compare various air refrigeration cycles usingDART.
b) Explain the following properties of refrigerants :
i) Latent heat of vaporzation
ii) Boiling point
iii) Miscibility.
iv) Specific heat of vapour refrigerant
v) Critical point

OR
Q2) a) Write note on: (i) ODP (ii) Secondary Refrigerants tii) LCCP
b) The following data refers to a bootstrap air cycleeyaporative refrigeration cycle used for an evaporator to take 20 tonnes of reftigeration load :
Ambient air temperature $=15^{\circ} \mathrm{C}$
Ambient air pressure $=0.8$ bar
Mach number of flight $=1.2$
Ram efficiency $=90 \%$

Pressure of air after main compresso6 $=4$ bar
Pressure of air after secondary cempressor $=5$ bar
Isentropic efficiency of main compressor $=90 \%$
Isentropic efficiency of secondary compressor $=80 \%$
Isentropic efficiency offooling turbine $=80 \%$
Temperature of airTeaving the first heat exchanger $=170^{\circ} \mathrm{C}$
Temperature of air leaving the second heat exchanger $=155^{\circ} \mathrm{C}$
Cabinpressure $=1$ bar :
Cabin temperature $=25^{\circ} \mathrm{C}$
Find
iv Draw neat temperature entropy plot of given system
ii) Temperature of air at the entry of main compressor
iii) Actual pressure of air at the entry of main compressor
iv) Actual temperature of air at the exit of main compressor

Actual temperature of ain at thé exit of secondary compressor.

Q3) a) Explain with schematic and p-h diagram $\mathrm{CO}_{2}-\mathrm{NH}_{3}$ cascade refrigeration system.
b) A R134a refrigeration system works with two evaporators, individual expansion valves, individual compressors and with single condenser find,
i) Mass of refrigerant circulated in each evaporator
ii) Compressor power for each compresson and total power
iii) COP of the system.

Assume that the refrigerant leaving each evaporator is dry and saturated and the liquid refrigerant leaving the condenser is saturated liquid. Compression is isentropic in each compressor.

Draw process on Ph chart provided @nd attach as supplement

Tempt $\left({ }^{\circ} \mathrm{C}\right)$	Pressure (Bar)	$\mathrm{hf}(\mathrm{KJ} / \mathrm{kg})$	$\mathrm{hg}(\mathrm{kj} / \mathrm{kg})$	cooling load
-20	1.350	172	387	4 TR
0	$2.90, ?^{2}$	199	398	2 TR
40	11.000°	258	418	-

USe P-h chart to find ' h ' at exit of compressor

OR

Q4) a) Explain a tor-stage vapour compression cycle with flash chamber for gas remova and intercooling with schematic and P-h diagram. Also write formula to calculate COP.
b) A typical multi-pressure system is shown in below figure with R134a as refrigerant in the cycle. Refrigerant is subcooled by $10^{\circ} \mathrm{C}$ at the condenser exit. Consider the exit of each evaporator to be saturated vapour. Find[9]
i) Draw neat Log P Vs h ploton the R134a chart provided and attach as supplement
ii) Mass flow rate through each evaporator
iii) Cooling load on condensér
iv) C.O.P of system

