Time : 1 Hour]

Instructions to the candidates:

1) Answer Q. 1 Or Q.2, Q.3 or Q.4, and Q.5 or Q.6.
2) Answers in One answer Books.
3) Figures to the right indicate full marks
4) Assume suitable data, if necessary.

Q1) Solve the fellowing LPP by Simplex Method
Maxinize $\mathrm{Z}=2 \mathrm{X}_{1}+\mathrm{X}_{2}$
oSubject to Constraints

$$
\begin{aligned}
& 4 X_{1}+3 X_{2} \leq 12 \\
& 4 X_{1}+X_{2} \leq 8 \\
& 4 X_{1}-X_{2} \leq 8 \\
& X_{1}, X_{2} \geq 0
\end{aligned}
$$

Q2) a) Discuss various decision making environment.
b) A TV dealer finds that the cost of a TV in stock for a week id RS 30 and the cost for the unit shortage id RS 70. For one particular model of TV the probability distribution of weekly sales are as follows:

Weekly Sales	0	1	2	3	4	5	6
Probability	0.1	0.1	0.2	0.25	0.15	0.15	0.05

How many units per week should the dealer order? Also find EPVI?

Q3) A pharmaceutical company is producing a single product and it selling it through five agencies situated in different cities. All of a sudden, there is a demand for the product in another five cities not having any agency of the company. The company placed witha problem of deciding on how to assign the existing agencies to dispatch,the product to needy cities in such a way that the travelling distance in minimized. The distance between the surplus and deficit cities in m is given below.

			C		
	${ }^{\text {P }}$	Q	R	S	T
	A) 11	17	8	16	20
Surplus	B 19°	7	12	6	15
Cities	C 13	16	15	12	16
	D o 21	24	17	28	26
	EV 14	10	12	11	13
	OR				

Q4) a) Find out the initial feasible solution by using VAM method.
Stores

A
Warehouse B

Requirement
b) Discuss the following related to the transportation model.
i) Feasible solution
ii) Optimum Solution
iii) Non-degenerate Basic feasible Solution
iv) Degenerate basje feasible solution.
a) Define what is operation research (Any four definition).
b) Players A and Bplay a game in which each has threechoice, A 5P, 10P and the 20P. Each selects a coin without the knouledge of the other's choice. If the sum of the three coins is an odd amount then A wins B's Coin. But if the sum is even then B wins A's Coin. Find the best strategy for each player and the value of game. For player Athe payoff matrix is

Player A	Player B		
	$5 \mathrm{P}: \mathrm{B} 1$	$10 \mathrm{P}: \mathrm{B} 2$	$20 \mathrm{P}: \mathrm{B} 3$
5P:A1	-5	10	20
10P:A2	5	-10	-10
20P:A3	5	-20	-20

Q6) a) Explain in brief following (Any four)
i) Gradual failure
ii) Sudden failure
iii) progressive failure
iv) Retrogressive failure
v) Random failure
b) A truck gwner finds from his past records that the maintenance cost per year of a truck whose purchase price is Rs. 8,000 are as follows:

$\text { Year } \lambda^{2}$	1	2	3	4	5	6	7	8
Maintenance Cost (Rs)	1000	1300	1700	2000	2900	$\begin{array}{r} 2 \\ 3 \\ 3800 \end{array}$	4800	6000
Resale price (Rs)	4000	2000	1200	600	500.	400	400	400

ODetermine at which time it is profitable to replace the truck

