Total No. of Questions :6]

P199

SEAT No. :

[Total No. of Pages :2

Oct./ BE/ Insem. - 515

B.E. (Mechanical)

CAD/CAM & AUTOMATION

(2015 course) (Semester - I) (402042)

Time : 1 Hour]

[Max. Marks :30

Instructions to the candidates:

- 1) Answer Q1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Figures to the right side indicates full marks.
- 3) Neat alagrams must be drawn wherever necessary.
- 4) Use of scientific calculator allowed.

Q1) a) A Line PQ with P(1, 1,), and Q(8, 8) is rotated through 20° in CW about point P. Find concatenated transformation matrix and new coordinates of line. Also, represent transformation graphically.

b) Compare Geometric Transformation and Geometric Mapping. [4]

OR

Q2) A triangle PQR is represented by P(2,3), Q(10, 3) and R(10, 12). Find concatenated transformation matrix and new coordinates of triangle PQR, if

- a) Translation by 5 and 10 units resp. along X and Y axes.
- b) Scaled by 1.5 times along X axis and 0.5 times along Y axis.
- c) Rotated by 30° in CCW direction about perpandicular axis to XY plane and passing through origin O(0, 0).

Represent transformation graphically.

[10]

- (Q3) a) What are the advantages of parametric representation of the curves in CAD system? [4]
 - b) The line L_1 has end points $P_1(2, 3, 4)$, $P_2(6, 8, 6)$ and line L_2 has end points $Q_1(1, 8, 4)$, $Q_2(8, 2, 6)$, then [6]
 - i) Find the parametric equations of the lines.
 - ii) Check, whether line L_1 is parallel to L_2 .

- Write parametric equation of a circle with center C(6, 4, 0) and Radius 6 **Q4**) a) units. Calculate coordinates of 3 equispaced points in first quadrant.
 - [6]
 - Explain briefly parametric representation of analytical surfaces. [4] **b**)
- Q5) The stepped bar shown in figure 1 is loaded axially by load P = 50kN, the modulus of elasticity of the bar is $0.7x10^5$ N/mm². Determine nodal displacement, elemental stress and reaction at support. [10]

- For the Axially Loaded Spring System as shown in figure 2, determine **06**) a) [6]
 - i) Nodal displacements.
 - Deformation of each spring ii)

