Total No. of Questions : 6]	SEAT No.:
P5800	[Total No. of Pages : 2

B.E./Insem./Oct.-515 B.E. (Mechanical)

CAD/CAM & AUTOMATION
(2015 Pattern) (Semester - I)

Time: 1 Hour]
Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Figures to the right side indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Use of scientific calculator allowed.
- Q1) a) A Line PQ with P(4, 6), and Q(20, 30) is rotated by 30° CCW about point P. Derive concatenated transformation matrix and find new coordinates of points.
 - b) Explain need of for mapping of geometric models.

OR

- **Q2)** Find the coordinates of triangle having vertex at A(6,10), B(6,25) and C(16,25) when reflected along a line having Y intercept 4 and inclined at $+20^{\circ}$ with X axis. Find concatenated matrix and transformed coordinates of triangle with graphical representation. [10]
- Q3) a) A line drawn from point $P_1(12,3,9)$ and has length of 10 units. The unit direction vector is 0.2i 0.8j + 0.566k. Determine endpoint of line. [4]
 - b) Explain, in brief

[6]

[4]

- i) Geometry and Topology with suitable example
- ii) Coons Patch Surface.

OR

- Q4) a) Determine the center point and radius of a circle passing through two diametrically opposite points $P_1(10,20)$ and $P_2(25,50)$. Determine parametric equation of circle and coordinates of four equispaced points in first quadrant. [6]
 - b) Explain B-spline Surfaces.

[4]

Q5) The stepped bar shown in **figure 1** is loaded axially by load P = 50kN, the modulus of elasticity of the bar is 0.7×10^5 N/mm². Determine nodal displacement, elemental stress and reaction at support. [10]

Figure 1 : Q.5

OR

Q6) a) For the Axially Loaded Spring System as shown in figure 2, determine(i) Nodal displacements, (ii) Deformation of each spring.[6]

Figure 2 : Q 6(a)

b) Discuss Strain Displacement relations in FEA.

[4]