Total No. of Questions : 8]

PB-3901

SEAT No. :

[Total No. of Pages : 3

Max. Marks : 70

[2]

[6262]-166 T.E. (Mechanical)

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING (2019 Pattern) (Semester - II) (302049)

Time : 2¹/₂ Hours] Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Nea Diagrams must be drawn wherever necessary.
- 3) Assume suitable data, if necessary.
- 4) Use of Non-Programmable Scientific Calculator is allowed.

Q1) a) Is Naive Bayes supervised or unsupervised algorithm? Why? [2]

OR

- b) Differentiate between clustering and classification. [6]
- c) Explain how Support Vector Machine works? Explain with neat sketch Hard Margin and Soft Margin. [9]
- Q2) a) Define following terms of Decision tree.
 - i) Leaf node
 - ii) Pruning
 - b) How does K-means work?
 - c) Use Naive Bayes algorithm to determine whether a red domestic SUV car is a stolen car or not using the following data : [9]

	Example no.	Colour	Туре	Origin	Whether stolen
	1	red	sports	domestic	yes of
	2	red	sports	domestic	no no
	3	red	sports	domestic	yes
	4	yellow	sports	domestic	no
	5	yellow	sports	imported	yes
AX.	6	yellow	SUV	imported	no
\sim	7	yellow	SUV	imported	yes
	8	yellow	SUV	domestic	no
	9	red	SUV	imported	no
	10	red	sports	amported	yes
			(<u> </u>	

- Q3) a) What are four typical problems to be solved using machine learning approach? [6]
 - b) Enlist and explain steps involved in development of classification model.

[6]

c) Explain use of Confusion matrix in Machine Learning Model with suitable example. [6]

OR

- Q4) a) What is hyper parameter tuning? Explain any three hyper parameters tuned in SVM? [6]
 - b) What is training data, labeled data and unlabeled data? What are key steps involved in developing training data? [6]
 - c) Explain with neat sketch K-fold cross-validation mode. [6]
- Q5) a) Explain the concept of Reinforcement learning with an example. Also define key terms used in Reinforcement learning. [8]
 - b) Explain Q-learning algorithm with flow diagram. [6]
 - c) The transfer function of neuron on one layer of a neural network is assumed to be of sigmoid form. Evaluate the output of neuron corresponding to input x = 0.62. How is the nature of sigmoid function? (Justify the answer with plot) [4]

🖓 OR

- *Q6*) a) Explain Convolution Neural Network (CNN) using neat flow diagram. Explain padding and striding in CNN.
 - b) Explain SARSA algorithm for reinforcement learning. [6]
 - c) A neuron with 4 inputs has the weights 1,2,3,4 and bias 0. The activation function is linear, say the function f(x) = 2x. It the inputs are 4, 8,5,6 compute the output. Draw a diagram representing the neuron. [4]
 - (27) a) Explain human and machine interaction? Explain with any example. [5]
 b) What is predictive maintenance? Explain different steps in predictive maintenance. [6]
 - c) Explain with suitable example how fault detection is done. [6]

[6262]-166

- OR
- **Q8**) a) Explain different steps in Dynamic system reduction.
 - Explain any one mechanical engineering application where image-based b) classification can be adopted. [6]

[5]

ed inmaterial inst ed in Explain the steps involved in material inspection? How machine learning can be implemented in material inspection. [6]

26.28 505102A 09.29.A

[6262]-166