Time : $2^{1 ⁄ 2}$ Hours]

Instructions to the candidates.

1) Solve questions Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Use of drawing instruments, electronic pocket calculators are allowed.
4) Figures to the right indicate full marks.
5) Assume suitable data if necessary.

Q1) a) \searrow Find nodal displacement, Stresses ineach element and reactions at support in stepped bimetallic bar shown in figure. The forces acting at center and the end of bar is 10 kN and 5 kN respectively. Use following data: $A_{1}=150 \mathrm{~mm}^{2} ; A_{2}=100 \mathrm{~mm}^{2}, E_{1}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} ; E_{2}=70 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$

b) An axial load $\mathrm{P}=300 \times 10^{3} \mathrm{~N}$ is applied at $20^{\circ} \mathrm{C}$ to the rod as shown in figure. The temperature is then raised to $60^{\circ} \mathrm{C}$.
i) Assemble the K and F matrices.
ii) Determine the nodal displacement and element stresses

$E_{1}=70 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
A 000 mm ?
$a_{2}=23 \times n^{-6}$ per ${ }^{\circ} \mathrm{C}$

Steel
$E_{2}=2 \% 0 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
$A_{2}=1200 \mathrm{~mm}^{2}$
$\alpha_{2}=11.7 \times 10^{-6}$ per $\cdot \mathrm{C}$

OR
Q2) a) Deternone the nodal displacement and element stresses for stepped bar shewn in figure. Use following data: $A_{1}=500 \mathrm{~mm}^{2} ; \mathrm{A}_{2}=250 \mathrm{~mm}^{2}$; $\mathrm{E}=70 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{E}_{2}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$

b) Determine the nodal displacements and element stresses in the truss structure shown below, assuming points 1 and 3 are fixed. Use $\mathrm{E}=70 \mathrm{GPa}$ and $\mathrm{A}=200 \mathrm{~mm}^{2}$.

Q3) a) The nodal coordinate of triangular element are shown in the figure. At the interior point ' P ' the x -coordinate is 3.3. $\mathrm{N} 1=0.3$. Determine $\mathrm{N} 2, \mathrm{~N} 3$ and the y-coordinate of point P.

b) What are the modifications are suggested based on the interpretation of results during post processing in CEA?
c) Explain the tricks for post processing in compoter aided engineering.[5]
OR

Q4) a) ${ }^{\text {In }}$ In a triangular element, the nodes, 2 ana 3 have Cartesian coordinates: $(30,40),(14,70)$ and $(80,140)$ respectively. The displacement in mm at nodes 1,2 and 3 are $(0.1,0.5),(0.60 .5)$ and $(0.4,0.3)$ respectively.The point P within the element has Cartesian coordinates $(77,96)$. For point P , determine:
i) The natural coordinates.
ii) The shape functions?
iii) The displacement of point P

b) How to verify and validate results in CAE post-processing?
c) What are the steps for interpretation of results during post processing in finite element analysis?

Q5) a) Give comparison of Linear and Nonfinear Analysis CAE Problems with respect to its characteristics features-Load-displacement relation. stressstrain relation, scalability, Stiess-strain measures, superposition, reversibility, Solution scheme, computational time and user interaction with software.
b) What are the different kinds of geometric non-linearities in CAE project? Explain with figures.
c) Write a general precedure for Non-linear static analysis project.

Q6) a) Explam difference between static analysis and dynamic analysis.
b) Explain free and forced vibration.
c) Explain noodal analysis, harmonic analysis and transient analysis to study the dynamic properties of the structures.
[6]

Q7) a) What is Computational Fluid Dynamics (CFD)? Explain the three dimension of fluid dynamics.
b) Discuss the concept of FEA for structural dynamics and acoustics used in NVH analysis.
c) Enlist the CAE software used for different application of CAE. Write at least 6 software with their applications.

Q8) a) What is durability, reliability and fatigue? Explain S-N Curve with low cycle, high cycle and infinite fatigue life.
b) Write typical application of computation fluid dynamics in various industries for the following domains:
i) Aerospace Engineering
ii) Automobile Engineering
iii) Civil Engineering
c) Explain use of FEA to optimize plastic injection mold materials.

