Total No	o. of Questions : 8]			9	CEAT No.	
	_			3	SEAT No. :	V
P7660	,		F < 4 0 0 1		[Total I	No. of Pages: 3
			[6180]	J		
			, , ,	nanical)		
Al	RTIFICIALIN		() •			RNING
	(2019)	Pattern) (Seme	ester - II)	(302049)	17
	½ Hours]				[M	Max. Marks: 70
instructi 1)	ons to the candidate Answer Q.1 or Q.1		0.4. 0.5 m	r 0.6 and 0.7	7 or 0.8.	
2)	Neat diagrams mu				o, 5.0.	
3)	Assume suitable d					
<i>4</i>)	Use of Non-Progr	ammable	Scientific	Calculator i	s allowed.	
					()c'	
Q1) a)	Use ID3 algorit	hm to co	nstruct a	decision tree	e for the data in	the following
	table:			Δ'		[6]
	Instance No.	X1	X2	Class labe	Į.	
	1	T	Т	10	•	
	2	T	T	D		
	3	T	F	0		
	4	F	F	1		
	5	F A	T	0		
	6	F	T	0		
b)	How does the l	K Neares	t Neighb	our (KNN)	algorithm wor	ks? (7)
c)	Explain baggin	g and bo	osting.			(4 <u>)</u>

OR

OR

Use Naïve Bayes algorithm to determine whether a Red SUV Domestic car is a stolen car or not using the following data:

Colour Type.

Origin Whether stolen

Example No.	Colour Type.	Ongin V	Vhether stolen
1	Red Sports	Domestic	Yes
2	Red Sports	Domestic	No
3	Red Sports	Domestic	Yes
4	Yellow Sports	Domestic	No
5	Yellow Sports	Imported	Yes
6	Yellow SUV	Improted	No
	, N		

P.T.O.

	7	Yellow SUV	Imported	Yes
	8	Yellow SUV	Domestic	No
	9	Red SUV	Imported	No
	10	Red Sports	Imported	Yes
b)	Explain working	of Support Vector Machi	nes? What are hyp	er parameters
	in SVM?	9,00		[7]
c)	How Naïve Bay	es is used for classificati	on.	[4]
	0			7 *
Q 3) a)	What is hyper pa	rameter tuning? Explain	any two hyper para	ameters in the
	Random Forest	algorithm.	0.	[9]
b)		sion matrix? Write any 2		_
	True Positive, Ti	rue Negative, False Posit	ive, False negative	e. [9]
	Define		50	
	i) Accuracy			
7	ii) Precision	9	.×.	
	iii) Recall		3.	
		OR		
Q4) a)	Why is data prep	rocessing required? Expl	ain techniques of p	preprocessing
	data.			[9]
b)	Explain follow	ing performance evalu	ators used for in	terpretation/
	assessment of cl	assification model:		[9]
	i) Cohen's K	appa Coefficient		S.Y. S.
	ii) F Score	186.		
	iii) ROC Curv			
			20)	8,
0.5)	5 0			1. 11 .
Q 5) a)		property. Explain why M	larkov property is	
1	solving Reinfore	•	(2)	[9]
b)		oction of neurons on on of sigmoid form. Eva	V / T / V	
\circ		input $x = 0.62$. How is		
/ >	(Justify the answ		6.	[9]
	T	9-	\mathcal{N}_{\star}	
1		OR O	′	

Q6)	a)	What are the characteristics of deep dearning? What is the different	ence
		between deep learning and machine learning?	[9]
	b)	Explain the working og biological neurons? Explain with a neat diag	ram
		equivalence of biological neuron and artificial neuron.	[9]
)
Q 7)	a)	Explain any one mechanical engineering application where image-ba	ased
		classification can be adopted.	[8]
	b)	What is predictive maintenance? Explain different steps in predic	tive
		maintenance.	[9]
		OR OR	
Q8)	a)	Explain human and machine interaction?	[8]
	b)	Write a short note on use of AIML in traffic control.	[9]
		0 kg.	
		9. V.	
	\		
			30
		O. W. S. S.	
		28.	,
		8 8 ×	
		0,20	
	1		
4		O' 35	
1	X	26. V	
1	7		
	-	189. 189. 189. 189. 189. 189. 189. 189.	
[618	30]-1	3	