Total No	No. of Questions: 8] SEAT No.				
	SEAT NO.				
P348		o. of Pages : 2			
	[6003] 429				
T.E. (Mechanical)					
COMPOSITE MATERIALS					
((2019 Pattern) (Semester - II) (302052 - A) (Elective	e - II)			
/II: 2:					
		lax. Marks : 70			
1nstructi 1)	ctions to the candidates. Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7or Q8.				
2)					
3)		·V			
4)					
Q1) a)					
	polymer matrix composites.	[6]			
b)	Explain the Squeeze casting process of fabrication of a	metal matrix			
	composite in detail.	[6]			
c)	what is diffusion bonding? Explain the metal matrix compos	ites produced			
	using diffusion bonding techniques?	[6]			
	OR				
Q2) a)	n) Describe liquid infiltration process with a neat sketch.	[6]			
b)	Explain in detail that metal matrix composites are fabricated us	sing a powder			
	metallurgy process.	[6]			
c)	e) Explain the spray forming process of fabrication of a n	netal matrix			
	composite in detail.	[6]			
Q3) a)	Find the ultimate transverse tensile strength for a unidirect	ctional glass/			

- Pind the ultimate transverse tensile strength for a unidirectional glass/epoxy lamina with a 70% fiber volume fraction. Assume that the fibers are circular and arranged in a square array. Take, Young's modulus of fiber (E_f) is 85 GPa, Young's modulus of matrix (E_f) is 3.4 GPa, Ultimate strength of fiber (σf) ult is 1550 MPa, Ultimate strength of matrix (σm) ult is 72 MPa.
 - b) Derive an expression for the volume and weight fraction of composites.[6]
 - c) Write a short note on large particle composites. [5]

OR

<i>Q4</i>)	a)	Derive the rule of mixture equation.	6]
	b)	What is a void fraction? What are the properties it governs?	6]
	c)	What do you mean by micro-mechanics and macro-mechanics of lamina	a?
			5]
Q 5)	a)	Describe with the help of a neat sketch the fatigue testing of polymers.	er
		matrix composite.	6]
	b)	What is bond strength or ply adhesion in polymer matrix composite	?
		Demonstrate its test procedure according to ASTM F 904.	6]
	c)	Explain any two non-destructive testing for polymer matrix composites.	6]
		OR	
Q6)	a)	Discuss common mechanical tests for composites mentioning the purpos	se
		of each test.	6]
	b)	What is fracture toughness of composite? Sketch different fracture mode	es
		to interpret the fracture failure.	6]
	c)	List the various international and national test standards developed to te	st
	,	mechanical properties of a lamina.	6]
Q7)	a)	State any three advantages and three disadvantages of using glass epox	ХУ
		Composite in Aircraft.	6]
	b)	State any six advanced properties of Composite materials that makes it	a
		better substitute to steel in an Automobile industry.	6]
	c)	What is multi-material technology? State any three benefits of multi-materi	al
		technology in Automobiles [5]/
		OR	1
<i>Q8</i>)	a)	State any three advantages and three disadvantages of using Boron Epox	ĭУ
			6]
	b)	Name the composite that can make the automobile light weight? State ar	ıy
		four advantages of the vehicle being light weight?	6]
	c)	Write any three advantages of Composite material over wood in buildir	ıg
	7	a boat? What will be preferred as a resin for building boat?	5]
		* * *	
		∽ °	