[5926]-155
 T.E. (Mechanical Engineering) COMPUTER AIDED ENGINEERING (2019 Pattern) (302050) (Semester - II)

Time : $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks : 70

Instructions to the candidates.

1) Answen Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Figures to the right side indicate full marks.
3) Draw neandiagram wherever necessary.
4) Assume suitable data, if necessary.

Q1) a) Figare shows the stepped bar subjected to load P_{1} (at center) and P_{2} using 1-D element.
$Q E^{\circ}=200 \mathrm{GPa}, P_{1}=50 \mathrm{KN}, \mathrm{P}_{2}=20 \mathrm{KN}$. Find
i) Nodal displacement
ii) Stresses in each element

b) An axial load $\mathrm{P}=300 \times 10^{3} \mathrm{~N}$ is applied at $20^{\circ} \mathrm{C}$ to the rod as shown in figure. The temperature is then raised to $60^{\circ} \mathrm{C}$.
i) Assemble the K and F matrices
ii) Determine the nodal displacement and elementstresses

Q2) a) Derive element Suiffnessinatrix for two and three noded (linear) bar element connected in series.
b) Determinethe nodal displacements, stresses in each element and reaction at supporin the following truss elements. $\mathrm{E}=85 \mathrm{GPa}$.

Q3) a) A constant strain triangular element is defined by three nodes 1 (1.5.2), $2(7,3.5)$ and $3(4,7)$. Evaluate the shape functions N1, N2 and N3 ${ }_{\mathrm{g} t} \mathrm{t}$ the interior point $\mathrm{P}(3.85,4,8)$. Also determine the Jacobian of the transfofmation J.

b) In a plane stress condition of a CST element shown in figure. Determine element stiffness matrix and nodal displacement.

$$
\mathrm{E}=200 \mathrm{GPa} \text {, Thickness }=.10 \mathrm{~mm} \text { and poisons ratio }=0.3
$$

Q4) a) The nodal coordinate of triangular element are shown inthe figure. At the interior pônt ' P ' the x-coordinate is 3.3. N1 $=0.3$. Determine N2, N3 and the y-coordinate of point P.

b) The triangular metallic plate $\left(\mathrm{E}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}, v=0.25\right)$ of thickness 10 mm is used to machune assembly. The coordinates of three vertices of the plate are shown in figure. The deflections observed at three nodes are;
$\mathrm{U}_{1}=0.01 \mathrm{~mm}$
$\mathrm{V}_{1}=-0.04 \mathrm{~mm}$
$\mathrm{U}_{2}=0.03 \mathrm{~mm}$
$\mathrm{V}_{2}=0.02 \mathrm{~mm}$
$\mathrm{U}_{3}=-0.02 \mathrm{~mm}$
$\mathrm{V}_{3}=0.05 \mathrm{~mm}$
Assuming the plate as CST element, determine the strains and strésses.[10

Q5) a) Give comparison of Linear and Nonlinear Analysis CAE Problems with respect to its characteristics features,
b) What are the different kinds of geemetric non-linearities in CAE Project? Explain with figures.
c) Write a general procedure farinon-linear static analysis project.

Q6) a) Explain difference betreen static analysis and dynamic analysis.
b) Explain free and forced vibration. Applications in consideration with CAE.
c) What is naturalfrequency? How it is evaluated in CAE? Why it is necessary to eyaluate?

Q7) a) What is.Computational Fluid Dynamics (CFD)? ${ }^{\text {E }}$) dimention of fluid dynamics.
b) Discuss the concept of FEA for structural dyramiics and acoustics used in NVH analysis.
c) \searrow Enlist the CAE software used for ifferenf application of CAE. Write at least software with their applications.

Q8) a) What is durability, reliability and fatigue? Explain S-N Curve with low cycle, high cycle and infinite fatigue life.
b) Write the comparison of Explicit and implicit method for following o criteria:
i) Common software
ii) Stability
iii) Computational speed/cost
iv) Maximum size of computational problem
v) Numerical scheme
vi) Handling nonlinearity
vii) Filtering of frequencies
c) How to validate and check accuracy of the CAE results and how to view and interpret the CAE results? Explain with computation accuracy and correlation with actual testing.

