Total No. of Questions :6]

P15

TE/Insem./APR-18

SEAT No. :

[Total No. of Pages : 2

T.E. (Mechanical)

302049 : REFRIGERATION AND AIR CONDITIONING

(2015 Pattern) (Semester II)

Time : 1 Hour]

Instructions to the candidates:

[Max. Marks: 30

1) Answer Q. Por Q.2, Q.3 or Q.4, Q.5 or Q.6.

- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of calculator is allowed.
- 5) Assume suitable data if necessary.

Q1)	a)	Compare evaporative cooler with air conditioning.	[6]
	b)	Describe selection of environment triendly refrigerant.	[4]

Q2) a) Discuss the necessity of phasing out of CFC refrigerants. [4]

OR

- b) Explain the working of ice plant with neat sketch.
- *Q3*) a) A VCR plant operates between evaporator and condenser temperature at-15°C and 40 °C respectively. The refrigerant is dry and saturated at the section. Discharge temperature of refrigerant is 98°C. The bore and stroke of compressor are 85 mm each. It runs at 750 rpm with volumetric efficiency of 82% The liquid enters expansion valve at 32°C. Calculate COP, mass flow rate of refrigerant. ($Cp_{liq}=1.62KJ/KgK, Cp_{gas}=0.96KJ/Kgk$) [6]

Saturation	V _g	h _f	hg	S	S _g
temperature °C	(m ³ /kg)	kJ/kg	kK/kg	kj/kgK	kJ/kgK
-15	0.24	43.4	458.70	0.18	1.742
40	0.043	131	468.6	0.48	1.567

P.T.O.

[6]

b) Compare vapour compression refrigeration system with vapour absorption system. [4]

[6]

QR

- (Q4) a) Explain aqua ammonia vapour absorption system with schematic diagram. [4]
 - b) Draw and explain actual vapour compression cycle in detail.
- Q5) a) Explain the limitations of the single stage vapour compression refrigeration system for production of low temperature. [4]
 - b) Explain multi evaporator refrigeration system with all the evaporators at same temperature and derive equation for COP of the system. [6]
- Q6) a) What is cryogenics? Give any four applications of cryogenics. [4]

9.240.20.200 C

OR

b) Explain working of Cascade refrigeration system with P-h diagram. [6]