Total No. of Questions : 12]

P2927

N

SEAT No. :

[Total No. of Pages : 3

[5669]-516

T.E. (Mechanical/Auto. Engg./Sandwich/Automobile) NUMERICAL METHODS AND OPTIMIZATION

(2015 Pattern) (Semester - II)

[Max. Marks: 70

Instructions to the candidates;

Time : 2¹/₂ Hours]

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6., Q.7 or Q.8, Q.9 or Q.10. and Q.11 or Q.12.
- 2) Neat alagrams must be drawn whenever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of scientific calculator is allowed.
- 5) Assume suitable data if necessary.

Q1) Evaluate the error in the volume of a tank $V = \frac{\pi}{4}d^2l$ at d = 1.5m and 1 = 2.5 if error in the measurement of diameter is ± 0.010 m and length is ± 0.020 m. [6]

Q2) A chip-tool interface temperature model is expressed as below : $T = 314 \times V^{0.42} \times f^{1.5}$

where, T-Average chip-tool interface temperature (°C), V-cutting speed (m/min) and f - feed (mm/rev)

Find maximum feed (f) in mm/rev to which temperature of tool will not increase above 900 °C for cutting speed of 340 m/min. Take initial guesses as [0, 0.5]. Solve for 5 iteration.

Q3) Use the Jacobi method to approximate the solution of the following system of linear equations

$$5x_1 - 2x_2 + 3x_3 = -1$$

-3x_1 + 9x_2 + x_3 = 2
2x_1 - x_1 - 7x_1 = 3

Continue the iterations until two successive approximations are identical when rounded to two significant digits. Take initial approximation as $x_1 = 0$, $x_2 = 0$, $x_3 = 0$.

P.T.O.

[6]

OR oo	
Q4) Solve following set of equations using Thomas Algorithm	[6]
$2.04 X_1 - X_2 = 48.8$	
$-X_1 + 2.04 X_2 - X_3 = 0.8$	
$-X_2 + 2.04 X_3 = 0.8$	
(Q5) a) Write a note on following with example	[4]
i) Supplus Variable	G
b) Write a note on simulated annealing	[4]
OR OR	
Q6) a) Solve following LP problem using graphical method	[5]
Minimize $Z = 5X_1 + 6X_2$	
Subject to $2X_1 + 5X_2 \ge 1500;$	
$3X_1 + X_2 \ge 1200$	
Where $X_1, X_2 \ge 0.$	
b) Write a short note on Genetic Algorithm.	[3]
(Q7) a) Draw a flowchart for Runge-Kutta 4 th order method.	[6]
b) Solve, $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ for the following condition.	[12]
At $x = 0$ and $x = 0.5$, $u = 1$ for all values of t. At $t = 0$, $u = 2x + 1$	- 1 for 0
< x < 0.5. Take increment in x as 0.1 and increament in t as 0.0)1. Find
all values of u for $t = 0$ to $t = 0.03$.	$\mathbf{S}^{\mathbf{I}}$
(08) a) Given that $dy/dx = yz dz/dx - xy y(0) = 1 z(0) = 1 = 0.1$	° [8]
Use R-K 2^{nd} order method to find value of v and 7 at $x = 0.1$	[0]
b) The temperature inside a slab of thickness 16 cm is given by	[10]
dT q 1 (Trinch Ch)	
$\frac{1}{dx} = -\frac{1}{A} \times \frac{1}{0.5^* (1+0.01^* \text{ T})} (1 \text{ is in deg.C deg.})$	
Find the temperature of other surface by taking step size = 4cm	, if heat
flux (q/A) is 1000 W/m ² and temperature at one surface 500 deg $P_{k} A^{\text{th}}$ order method	g.C. Use
[5669]-516 2	

Q9) a) A set of x values and respective values are given below. Using appropriate interpolation method, find the value of y at x = 11.5.[8]

Х	2	5	10	12	15
у	45	68	575	90	98

b) The values of Nusselt numbers (Nu) and Reynold numbers (Re) found experimentally are given below. If the relation between Nu and Re is of the type $Nu = a Re^b$, find the values of a and b for the given values of Nu and Re. [8]

2000	2400	2800	3200	3600	4000		
13.0102	13.5091	14.0789	14.4192	15.1297	16.7535		
OR							

Q10)a) A set of x values and respective y values are given below Using Lagrange inverse interpolation method, find the value of x at y = 0.42 [8]

X	Ъ́х	10	20	30	40	50
\sum_{i}	у	0.1105	0.1985	0.2727	0.4101	0.5123
	1		0.1 0			2.0

b) Fit a quadratic equation of the form $y = a_0 + a_1 x + a_2 x^2$ for a set of given values : [8]

X	2	5	8 8 10	15	20
у	0.2841	2.8631	12.082 23.2612	11.6725	1.2792

Q11)a) The Velocity v (m/min) of moped which start from rests is given at fixed interval of time t(min) as follows: [10]

t (min)	0	2	4 6	8	10	12	14	16	18	20	
v(m/min)	0	10	18 25	29	32	20	11	5	2	0	b' v

Estimate approximately the distance covered in 20 minutes. Use Simpson's 1/3 and Trapezoidal rule.

[8]

b) Use Gauss-Legendre three-point formula to evaluate $D = \int e^x dx$ [6]

OR

Q12)a) Draw a combined flowchart for Simpson's 1/3 rule and Simpson's 3/8 rule.

b) Evaluate
$$I = \int_{0}^{1} \left[\int_{0}^{1} e^{(x+y)} dx \right] dy$$

using trapezoidal rule, Take strip size for x and y axis as 0.5.

[5669]-516

3 9.4