Total No. of Questions : 12]

P3572

[5560]-516

SEAT No. :

[Total No. of Pages : 3

T.E.(Automobile & Mechanical) NUMERICAL METHODS AND OPTIMIZATION (2015 Course) (Semester - II) (302047)

Time : 2¹/₂ Hours] Instructions to the candidates: [Max. Marks : 70

- Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8, Q9 or Q10, Q11 or Q12. 1)
- 2) Neat diagrams must be drawn wherever necessary.
- Figures to the right indicate full marks. 3)
- Use of calculator is allowed. **4**)
- Assume suitable data if necessary. 5)
- **Q1**) Explain the convergence and divergence of Successive Iterative method with graphical representation. [6]

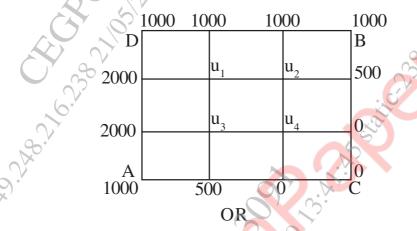
OR

- Q2) Solve by Bisection method $x^3 4x + 1 = 0$ correct up to two decimal places.[6]
- Q3) Solve the following equation by Gauss Elimination method, [6] 2x + 3y - z = 5, 4x + 4y - 3z = 3, 2x - 3y + 2z = 2
- Q4) Solve the following simultaneous equations using Tridiagonal Matrix Algorithm \sim (TDMA),

OR

 $5x_1 - x_2 = 5.5$ $-x_1 + 5x_2 - x_3 = 5$ $-x_2 + 5x_3 - x_4 = 11.5$ $-x_3 + 5x_4 = 16.5$

A8-26-29-2105/1019 A8-26-29-2105/1019 (0.5) Solve the following problem of LPP graphically,


[8]

Maximize $Z = 2x_1 + 5x_2$ Subject to, $x_1 + 4x_2 \le 24$ $3x_1 + x_2 \le 21$ $x_1 + x_2 \le 9$ $x_1, x_2 \ge 0$

OR

P.T.O.

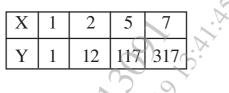
- Q6) Write a short note on Simulated Annealing with flowchart and applications in detail. [8]
- Solve the second order differential equation $y'' = xy'^2 y^2$ for x = 0.2**Q7**) a) correct to 4 decimal places. Initial conditions are x = 0, y = 1, y' = 0, by Runge Kutta 2^{nd} order. Increment in x = 0.1. [10]
 - Solve the equation $u_{xx} + u_{yy} = 0$ for the square mesh with the boundary **b**) values as shown below : [8]

- Solve the boundary value problem $u_t = u_{xx}$ subjected u(0,t) = u(1,t) = 0**Q8**) a) $u(x,0) = \sin \pi x$, $0 \le x \le 1$, using Bender Schmidt method taking h = 0.2and k = 0.02. [10]
 - Draw flow chart for Solution of Ordinary Differential Equation by Runge b) Kutta 4th order. [8]
- It is known that the curve $y = ax^{b}$ fits the data given below. Find the best **Q9**) a) values of a and b? [8] 10.200 10 mm

X	1	2	3	4	5	6
y	1200	900	600	200	110	50

- b)
 - From the following data, find y at x = 43

[8]


X	40	50	60	70	80	90
у	184	204	226	250	276	304

OR

2

[5560]-516

- Draw the flowchart for fitting second degree curve using Least Square *Q10*)a) Technique. [8]
 - Following data gives values of x corresponding to the values of x. Find b) value of x when y = 3.5 by applying Langrange's interpolation. [8]

- Find double integration of f(x,y) = 1/(x + y) for x = 2 to 3.2 and y = 1 to *Q11*)a) 2.8 taking no of steps in both x and y as nx = ny = 3. Use Trapezoidal rule. [8]
 - The table below gives the velocity v of a moving particle at time t seconds. b) [8]

TO	2	4	6	8	10	12
V 4	6	16	34	60	94	136

Find the distance covered by the particle in 12 seconds using Simpson's 1/3rd rule.

[8]

- Draw flow chart for Simpson's 3/8th rule. *Q12*)a)
 - re two is the second se Evaluate I = $\left[\log_e (x+1) + \sin 2x \right] dx$ by using Gauss quadrate two b) point formula.

3