Total No. of Questions: 12]

SEAT No.:

P1698

[Total No. of Pages: 3

[5460]-516

T.E. (Mechanical/Automobile) NUMERICAL METHODS & OPTIMIZATION (2015 Pattern) (Semester - II)

Time: 2½ Hours]

IMax. Marks: 70

Instructions to the candidates:

- Solve Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7or Q8, Q9 or Q10 and Q11 or Q12.
- Neat diagrams must be drawn wherever necessary. 2)
- Figures to the right indicate full marks. 3)
- Use of calculator is allowed. 4)
- Assume suitable data, if necessary. 5)
- Q1) Explain the convergence and divergence of Successive Iterative method with graphical representation. [6]

- Q2) Solve by Bisection method $3x = \cos x + 1$ correct up to three decimal places.
- Solve the following equation by Gauss Elimination method, with partial O3)pivoting.

proofing.

$$2x + y + z = 10$$
, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$.

agona. Q4) Solve the following simultaneous equations using Tridiagonal Matrix Algorithm (TDMA).

$$5x_1 - x_2 = 5.5$$

$$-x_1 + 5x_2 - x_3 = 5$$

$$-x_2 + 5x_3 - x_4 = 11.5$$

$$-x_4 + 5x_4 = 16.5$$

Q5) Solve the following problem of LPP.

Maximize $Z = 2X_1 + X_2$ Subject to, $X_1 + 2X_2 \le 10$ $X_1 - X_2 \le 2$ $X_1 + X_2 \le 6$ $X_1 - 2X_2 \le 1$ $X = 2X_1 + X_2 = 3$

OR

[8]

- **Q6)** Write a short note on Simulated Annealing with flowchart and applications in detail.
- **Q7)** a) Solve the second order differential equation $y'' = xy''^2 y^2$ for x = 0.2 correct to 4 decimal places. Initial conditions are x = 0, y = 1, y' = 0, by Runge Kutta 2nd order.
 - b) Draw flow chart for Eulers Method for given no of iterations. [8]

OR

- **Q8)** a) Solve the $u_t = u_{xx}$ subjected to u(0, t) = u(1, t) = 0 $u(x, 0) = \sin \pi x$, $0 \le x \le 1$, using Bender Smithdt method taking h = 1
 - b) Draw flow chart for Solution of Ordinary Differential Equation by Runge Kutta 4th order. [8]
- Q9) a) An experimental data on life time 't' of a cutting tool at a different cutting speeds 'v' is given below: [8]

Speed v	325	375	450	475 500
Life t	75	30	10	7 5

Fit the curve of the form $v = at^b$.

b) From the tabulated values of x and y given below prepare forward difference table. Find the polynomial passing through the points and Estimate the value of y when x = 1.5. [8]

X	0	2 0	4	6
у	5	290	125	341

OR

Q10) a) Fit a straight line passing through the points:

V 1	2	5	7
Λ		3	/
Y) a	12	117	317

b) Draw the flowchart for $y = ax^b$

[8]

[8]

Find double integration of f(x) = x + y + 5 for x = 0 to 2 and y = 0 to 2 *Q11)* a) taking increment in both x and y as 0.5. Use Trapezoidal rule.

The velocity of car running on a straight road at the interval of 2 minutes is given below:

Time (min)	0	2	4	6	8	10	12
Velocity (Km/hr)	0	22	30	27	18	7	0

Find the distance covered by the car using Simpson's 1/3rd rule.

OR

Draw combine flow chart for Simpson's 3/8th rule & Simpson's 1/3rd *Q12)* a) rule.

b) Evaluate $I = \int [\log_e(x+1) + \sin 2x] dx$ by using Gauss quadrate two point 9.1x.16.2x formula.

[8]