Total	No.	of	Questions	:	4]
--------------	-----	----	-----------	---	----

		_
\mathbf{n}	$\Gamma \mathcal{L}$	•
	rana	

SEAT No.:			
[Total	No	of Pogos	. 1

[6579]-370

T.E. (Mechanical) (Mechanical Sandwich) (Insem) NUMERICAL & STATISTICAL METHODS (2019 Pattern) (Semester - I) (302041)

Time: 1 Hour]

[Max. Marks: 30

Instructions to the candidates:

- 1) Solve Q.1 or Q.2 and Q.3 or Q.4.
- 2) Figures to the right side indicate full marks.
- 3) Use of electronic Calculator is allowed.
- 4) Assume the suitable data, if necessary.
- Q1) a) Draw the Flow chart for Newton raphson Method (Accuracy Criteria).[6]
 - b) Solve the system of equation Gauss seidel up to 4 iteration.

$$x_1 + 2x_2 + 3x_3 = 6$$

$$4x_1 + 3x_2 + x_3 = 8$$

$$5x_1 + 5x_2 + 4x_3 = 14$$

OR.

- Q2) a) What is meant by partial prvoting. Write a steps for Gauss elimination to solve simultaneous equations?
 [6]
 b) Using three iteration of bisection method determine root of the equation.
 - Using three iteration of bisection method determine root of the equation. Initial guesses are $x_1 = 2.8$ and $x_2 = 3$, $f(x) = -0.9x^2 + 1.7x + 2.5$. [9]
- Q3) a) Solve the differential equation by Euler's method to solve the initial value problem over the interval x = 0 to 2 with h = 0.5 where $\frac{dy}{dx} = yx^2 + 1.1y$; where y(0) = 1.
 - b) Using Runge-Kutta method of fourth order, solve for y at x = 1.2, 1.4 for

$$\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}. \text{ Given } x_0 = 1, y_0 = 0.$$
 [9]

- Q4) a) Draw a Flow chart for Runge-Kutta second order method.
 - b) A steel plate of 750×750 mm has its two adjacent sides maintained at 100 degree celsius while the two other sides are maintained at 0 degree Celsius. What will be the steady state temperature at interior points assuming a grid size of 250mm. [9]

