PB-3897

[6262] 162

T.E. (Mechanical/Mechanical Sandwich Engg.) NUMERICAL AND STATISTICAL METHODS (2019 Fattern) (Semester - I) (302041)

Instructions to the candidates:

strips.

Time : $2^{1/2}$ Hours]

V

SEAT No. :

[Total No. of Pages : 3

[Max. Marks : 70]

- 1) Solve Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6 and Q.7 OR Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Scientific Calculator is allowed.
- 5) Assume Suitable data if necessary.
- **Q1**) a) Evaluate $\int_0^1 \int_0^1 (x^2 y^2) dx dy$ by using suitable method. Take Step size in x & y as 0.25. [9]
 - b) Find the integration of e^{cos}(x)-2x in limits 0 to 1 by using 3-point Gauss Legendre formula. [9]
- **Q2)** a) Gas is expanded according to law $pV^{1.3} = C$ from the pressure of $10N/m^2$. Assuming the initial volume of gas $1m^3$ and final volume 7 m³.

Calculate work done using Simpson's $\frac{1}{3}$ rule. Divide volume in 6 equal

b) Using Gauss-Legendre two point formula to find $(x^2 + 3x + 2)dx$.

c) Draw flowchart of Trapezoidal Method to evaluate Integration of a [5]

) a)	Draw flowchart for the equ		[8]				
b)	The population of a town is		[10]				
	Year(x)	1941	1951	1961	1971	1981	
	Population in Lakhs (y)	20	24	29	36	46	

Estimate the population increase during the period 1941 to 1946.

[8]

[5]

- OR
- The variations of deformation of a metal rod can be modeled as **Q4**) a) $d = aT^2 + bT + c$, where T is the Operating Temperature. Calculate the values of a, b, and c from the following table : [10]

Temperature (K) 300	350	400	450	500
Deformation (mm) 0.913	0.929	0.922	0.918	0.909

The following data gives the values of y corresponding to certain values b) of X. Find the value of X when Y = 167.59789 by applying suitable method [8]

Compute Karl Pearson's coefficient of correlation between X and Y for *Q*5) a) the following data : [8]

· Ar	Х	100	98	78 85 110	93	80
×,	Y	85	90	70 72 95	81	74

The competitors in a beauty contest are ranked by three judges in the b) following order. Use rank correlation coefficient to discuss which pair of judges has nearest approach to beauty. [9]

				/						
1 st judge	1	5 4	S	9	6	10	7	3	2	
2 rd judge	4	8 79	6	5	9	10	3	2	1	3
3 rd judge	6	7 8	1	5	10	9	2	3	4	LC V
OR								N	5	

From the following data of marks obtained by 8 students in Numerical **Q6**) a) and Statistical methods (NSM) and Heat and mass transfer (HMT) papers, compute rank coefficient of correlation. O, [9]

									/		
	NSM	15	20	28	12	40	60	20>	80		
	HMT	40	30	50	30	20		30	60		
iscuss the following terms :											
1	Coefficient of variation										
	Central moments										
)	Standard deviation										
)	Grouped and Ungrouped Data										

[8]

Discuss the following terms :

- Coefficient of variation i)
- ii) Central moments
- iii) Standard deviation
- Grouped and Ungrouped Data iv)

[6262]-162

2

- Q7) a) A can hit the target 1 out of 4 times, B can hit the target 2 out of 3 times and C can hit the target 3 out of 4 times. Find the probability of (i) at least two hit the target (ii) At most two hit the target (iii) No one hitting the target.
 - b) In a distribution of 'NSM' marks exactly normal, 7% of students are under 35 and 89% are under 63. Find the mean and standard deviation of the distribution. $[A_1 = 0.43, Z_1 = 1.48, A_2 = 0.39, Z_2 = 1.23]$ [8] OR
- Q8) a) Among 64 offsprings of a certain cross between guinea pigs 34 were red, 10 were black and 20 were black and 20 were white. According to a genetic model, these numbers should be in the ratio 9:3:4. Are the data consistent with the model at 5% level? [9]

Given $(\chi^2_{2,0.05} = 5.99)$.

- b) A can hit the target 1 out of 4 times, B can hit the target 2 out of 3 times and C can hit the target 3 out of 4 times. Find the probability of [8]
 - i) At least two hit the target
 - ii) At most two hit the target
 - iii) No one hitting the target