\square

T.E. (Mechanical Engg) (Mechanical s/w) NUMERICAL AND STATISTICALMETHODS (2019 Pattern) (Semester - I) (302041)

Time : $\mathbf{2 ¹}^{1 ⁄ 2}$ Hours]
[Max. Marks: 70
Instructions to the candidates:

1) Solve Q.No. 1 or Q.No.2, Q.No. 3 or Q.No.4, Q.No. 5 or Q.No. 7 or Q.No.8.
2) Neat diagrams musíbe drawn wherever necessary.
3) Use of drawing instruments, electronic pocket calculators are allowed.
4) Figurés to the raght indicates full marks.
5) Assume suitable data, if necessary.

Q1) a) Find integration of $\mathrm{e}^{\mathrm{x}} \cos (\mathrm{x})-2 \mathrm{x}$ in limits 0 to 1 by using 3-point Gauss Legendre formula.
b) Evaluate

$$
\int_{0}^{6} 1 /\left(1+x^{2}\right)^{d x}
$$

by using the Trapezoida rule. Take six intervals.
c) Draw a flow chart for Simpson's $1 / 3^{\text {rd }}$ rule to evaluate integration of any function.

Q2) a) Find integration of $\int_{0}^{1} x e^{x} d x$ by using 2-point Gauss Legendre formula.[5]
b) Draw a flow chart for Trapezoidal rule to evaluate integration of any function.
c) The velocity ' v ' ($\mathrm{km} / \mathrm{hr}$) of a vehicle which starts from rest, is given at fixed intervals of time ' t ' (min) as follows:

t (min)	2	4	6	8	10	12	14	16	18	20
$\mathrm{~V}(\mathrm{~km} / \mathrm{hr})$	10	18	25	29	32	20	11	05	02	00

Estimate approximately the distance cotvered in 20 minutes. Select appropriate method.

Q3) a) Find the least square polynomial approximation of quadratic curve to the data.

x	0	1	2	3	4
y	-4	-1	4	11	20

b) The following data givesthe values of y corresponding to certain values of x, Find the value $\left.g^{f}\right) x$ when $y=167.59789$ by applying Lagrange's method.

| x | 1 | 2 | 5 | 7 |
| :--- | :--- | :--- | ---: | ---: | ---: |
| y | 1 | 12 | 117 | 317 |

OR
Q4) a) Following is the table of square roots. Calculate the values of $\sqrt{151}$ by Newton's interpolation formula.

X	150	152	154	156
$\mathrm{Y}=\sqrt{X}$	12.247	12.329	12.410	12.490

b) Fit a straight line to given data regarding x as the independent variable.[9]

x	1	2	3	4	5	6
y	1200	900	600	200	110	50

Q5) a) From the following data of marks obtained by 8 students in Numericaf and Statistical Methods (NSM) and Heat and Mass Transfer (HMT) papers, compute rank coefficient of correlation.

NSM	15	20	28	12	40	60	20	80
HMT	40	30	50	30	20	10	30	60

b) Discuss the following terms.
i) Coefficient of variation
ii) Central moments
iii) Standard deviation
iv) Grouped and Ungrouped Data.

OR

Q6）a）Illustrate the following statistical diag？ams with real life example
i）Scattered diagram
ii）Histogram
iii）Pie chart
b）The competitors in a beauty contest are ranked by three judges in the following order．Use rank correlation coefficient to discuss which pair of judges has nearest approach to beauty．

$1^{\text {st }}$ judge	\mathbf{n}^{2}	5	4	8	9	6	10	7	3	2
$2^{\text {ndjudge }}$	4	8	7	6	5	9	10	3	2	1
$3^{\text {rdjudge }}$	Q^{8}	7	8	1	5	10	9	2	3	4

Q7）a）The number of breakdowns of a computer in a week isa Poisson variable with $\lambda=n \varphi=0.3$ ．What is the probability that the comquter will operate：［8］
i）With no breakdown
ii）At the most four breakdown
iii）At least five breakdowns．
iv）More than 5 breakdown．
v）Less than 4 breakdownsin a week．
b）In distribution of＇NSM＇masks exactly normal， 7% of students are under 35 and 89% are under 63 ．Find the mean and standard deviation of the distribution．
$\left[\mathrm{A}_{1}=0.43, \mathrm{Z}_{1}=1.48, \mathrm{~A}_{2}=0.39, \mathrm{Z}_{2}=1.23\right]$
OR

Q8）a）Let $\mathrm{F}: \mathrm{R}^{4} \rightarrow R^{3}$ be the linear mapping defined by
$F(x, y, z, t)=(x-y+z+t, x+2 z-t, x+y+3 z-3 t$ ．Find a basis and the dimension of（a）the image of F ，（b）the kernel of F ．
b）Among 64 offsprings of a certain cross between guinea pigs 34 were red， 10 were black and 20 were black and 20 were white．According to a genetic model，these numbers should be in the ratio 9：3：4．Are the data consistent with the model at 5% level？
Given（ $x_{2}^{2}, 0.05=5.99$ ）

