T.E. (Mechanical)/(Mechanical Sandwich Engg.)
 HEAT AND MASS TRANSFER (2019 Pattern) (Semester-I) (302042)

Time: $2^{1 ⁄ 2}$ Hours]
Instructions to the candidates:

1) Answer Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Draw neat diagram wherever necessary.
3) Use of scientifio calculator is allowed.
4) Assume Suitable data if necessary.
5) Figures to the right indicate full marks.

Q1) a) Water is flowing at the rate of $50 \mathrm{~kg} / \mathrm{min}$ through a tube of inner diameter 2.5 cm . The inner surface of tube is maintained at $100^{\circ} \mathrm{C}$. If the temperature of water increases from $25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, find tength of tube required.

$$
\mathrm{Nu}=0.023 \mathrm{Re}^{0.8} \operatorname{Pr}^{0.4} \text {, Propeties बf water }: \rho=977.8 \mathrm{~kg} / \mathrm{m}^{3} \text {, }
$$

$$
\mathrm{K}=0.6672 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mu=405 \times 10^{6} \mathrm{Ns} / \mathrm{m}^{2}, \mathrm{C}=4.187 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C} \text {. }
$$

b) Explain
i) Reynolds Number
ii) Nusselt Number
iii) Grashof Number
iv) Stanton Number

OR

Q2) a) A hot plate $1 \mathrm{~m} \times 0.5$ mát $130^{\circ} \mathrm{C}$ is kept vertically in still air at $20^{\circ} \mathrm{C}$. [10] Find:
i) Heat transfer coefficient,
ii) Initial rate of cooling the plate in ${ }^{\circ} \mathrm{C} / \mathrm{min}$.

Assume 0.5 m side is vertical and heat transfertakes place from both the sides of the plates.
Take properties of air as $\mathrm{Cp}=1007 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}, \mathrm{K}=0.029 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$, $\bar{v}=19.1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \operatorname{Pr}=0.7$
Assume mass of plate $=20 \mathrm{~kg}$ and specificheat of plate $=400 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$ Use $\mathrm{Nu}=0.59(\mathrm{GrPr})^{1 / 4}$
b) Mention difference between film wise and drop wise condensation, Explain pool boiling and Regimes of pool boiliing.

Q3) a) Explain the following terminology of Radiation.
i) Planck's Law
ii) Kirchhoff's law
iii) Wein's Displacement Daw
iv) Stefan-Boltzmannlaw
b) Derive and expression for the shape factor in case of radiation exchange between two surfacés.

OR

Q4) a) Two targe parallel plates are maintained at temperatures of $600^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$ having their emissivity's of 0.9 and 0.4 respectively. A radiation shield having emissivity of 0.02 is inserted in betweenthem. Calculate[10]
i) \times Heat transfer rate without shield
(ii) Heat transfer rate with shieldand Usé $=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
b) Define shape factor. Explain laws of shape factor.

Q5) a) State Fick's Law of Diffusion andExplain Mass diffusion coefficient. [6]
b) The molecular weights of the two components A and B of a gas mixture are 24 and 28 respectively The molecular weight of gas mixture is found to be 30 . If the mass concentration of the mixture is $1.2 \mathrm{kgm}^{3}$, determige the following.
i) Molar fractions
ii) Mass fractions
iii) Total pressure if temperature of mixture is 290 K
c) Define following Terminology.
i) Mass Diffusion velocity
ii) Molar Diffusion velocity
iii) Mass Diffusion Flux
iv) Molar Diffusion Flux

Q6) a) A mixture of CO_{2} and N_{2} is in accontainer at $25^{\circ} \mathrm{C}$, with each species having a partial pressure of 1 bat. Calculate the molar concentration, the mass density, the mole fraction, and the mass fraction of each species.[8]
b) Draw Phase Diagram and explain different phases
c) Write down the PhysicaDorigins of mass transfer and enlist the applications of mass transfer

Q7) a) Consider the following parallel flow heat exchanger specification: cole flow enters at $40^{\circ} \mathrm{C}, \mathrm{Cc}=20000 \mathrm{~W} / \mathrm{K}$, hot flow enters at $150^{\circ} \mathrm{C}$, $\mathrm{Ch}=10000 \mathrm{~W} / \mathrm{K}, \mathrm{A}=30 \mathrm{~m}^{2}$, The overall heat transfer coefficient is $500 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the heat transfer rate and the exit temperature.[10]
b) Derive LMTD for parallel flow heat exchanger and mention assumptions considered for derivations.

Q8) a) A cross flow heat exchanger with bothofluids unmixed is used to heat water flowing at a rate of $20 \mathrm{~kg} / \mathrm{s}$ from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ using gases available at $300^{\circ} \mathrm{C}$ to be cooled $180^{\circ} \mathrm{C}$. The overall heat transfer coefficient has a value of $9515 \% \mathrm{~m}^{2} \mathrm{~K}$. Determine the area required. For gas $\mathrm{Cp}=1005 \mathrm{~J} / \mathrm{k}: \mathrm{K}$.
[12]
b) Explain TEMA stancards. 3^{∞}

