SEAT No. : $\square$
[Total No. of Pages : 4

# T.E. (Mechanical/Mechanical Sandwich) MEGHATRONICS <br> (2019 Pattern) (Semester - I) (302044) 

Time: $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Answer Q. 1 of Q.2, Q. 3 or Q.4, Q. 5 or Q. 6 and Q. 7 or Q.8.
2) Use of drawing instruments, electronic pocket calculaters are allowed.
3) Figures to the right indicates full marks.
4) Assume Suitable data if necessary.

Q1) a) Find the transfer function of the given system for $F(t)$ input and $X(t)$ output for the given figure below.

b) Explain the application of mechatronics : automatic assembly machine
c) Reduce the block diagram and find the transfer function of the following Figure.

P.T.O.

Q2) a) Compare open loop and close logp control system with block diagram and applications.
b) Explain the concept of poles of zeros for stability analysis.
c) Reduce the block diagram and find the transfer function of the following Figure.


Q3) a) Explain natural frequency, damped frequency and damping ratio in detail.
b) Compare time response and frequency response analysis
c) For the system with transfer function $\frac{1}{(S+5+5 j)(S+5-5 j)}$. Draw the pole and zero plotand findamping ratio, natural frequency, peak time, maximum oyershoot

OR

Q4) a) Explain Bode plot with magnitude plot and phase plot.
b) Explain frequency response specifications such as resonant peak, resonant frequehcy, band width
$\frac{C(s)}{R(s)}=\frac{4 s+6}{s^{2}+4 s+6}$
For the transfer function of second order system presented by above equation, determine: (i) Iocation of poles and zeros ii) damping factor iii) comment of stability.

Q5) a) Using a suitable block diagram explain the working of PID controller in series form.
b) Distinguish between Proportional and Derivative controller.
c) The Figure given below shows an error time graph. Sketch PID controller (Parallel form) output with respect to time. Assume Kp = 10. $K_{1}=2 . K_{D}=0.5$ and $P o=0$ fié. the controller output is zero when the error is zero.

## OR

Q6) a) ${ }^{\text {Explain manual tuning method used forPID controller }}$
b) State the advantages and application of PID controller.
c) An integral controller is used for speed control with a set point of 13 rpm within a range of 10 to 20 rpm . The controller output is $22 \%$ initially. The constant $\mathrm{K}=-015 \%$ controller output per second per percentage error. If the speed jumps to 11.5 rpm , calculate the controller ${ }_{8} 0$ output after $2 \sec$ for constant $\mathrm{e}_{\mathrm{p}}$.

Q7) a) Explain the conceptof $/$ Latching with ladder in PLC.
b) What is the Internal Architecture in any PLC?
c) Draw a ladder diagram for the following operation 9) wo push buttons $\mathrm{PB}_{1}$ and $\mathrm{PB}_{2}$ are used to operate Red and Yellow tight
i) When $\mathrm{PB}_{1}$ is pushed Red lamp should be ON and it will continue to be ON till $\mathrm{PB}_{2}$ is pushed.
ii) When $\mathrm{PB}_{2}$ is pushed, Yellow light should be ON and it will continue to be ON till $\mathrm{PB}_{1}$ is pushed.
iii) If $\mathrm{PB}_{1}$ and $\mathrm{PB}_{2}$ is pushed simultaneousity, no lamp should be ON

Q8) a) Draw the block diagram of PLC andexplain.
b) Explain counters in PLC with a neat sketch and explain UP and DOWN counters.
c) A circuit involves four NO type switches. P1, P2, S1 and S2 and a DC motor $(\mathrm{M})$.Draw a ladder diagram such that following conditions are satisfied.
i) When P 1 as pushed the circuit shall turn ON and shall continue to remain ON until P 2 is pushed
ii) When S 1 is pushed and S 2 is not pushed then motor is ON in clockwisedirection
iii) When S 2 is pushed and S 1 is not pushed then motor is ON in anti-clockwise direction
iv) Whien P2 is pushed the circuit turns OFF

