T.E. (Mechanical /Mechanical Sandwich Engg.)

HEAT AND MASS TRANSFER (2019 Pattern) (Semester-I) (302042)

Time: $\mathbf{2 ¹ ⁄ 2}^{1 ⁄ 2}$ Hours]
[Max. Marks: 70
Instructions to the candidates:

1) Answer Q. 1 or Q.2, Q.3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Figures to the right indicate full marks.

Q1) a) Explain briefly various regimes in pool boiling with sketch of typical pool boiling curve.
b) Explain the following Non-dimensional numbers
i) Reynold Number
ii) Grashoff Number
c) WWater flows at a velocity of $12 \mathrm{~m} / \mathrm{s}$ in a straight tube of 60 mm diameter. The tube surface temperature is-maintained at $70{ }^{\circ} \mathrm{C}$ and the flowing water is heated from the inlet temperature of $15{ }^{\circ} \mathrm{C}$ to an outlet temperature of $45^{\circ} \mathrm{C}$. Taking the physicalproperties of water at the mean bulk temperature of $30^{\circ} \mathrm{C}$ as $\mathrm{e}=995.7 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{Cp}=4.174 \mathrm{~kJ} / \mathrm{kgk}, \mathrm{k}=61.718 \times$ $10^{-2} \mathrm{~W} / \mathrm{mK}, v=0805 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ and $\operatorname{Pr}=5.42$, Use correlation, 8 $\mathrm{Nu}_{\mathrm{d}}=0.023\left(\mathrm{Re}_{\mathrm{d}}\right)^{0.8}(\mathrm{Pr})^{0.4}$. Galculate (a) the heat transfer coefficient from the tube surface to the water, (b) the heat transfer and (c) the lengthiof tube.

Q2) a) Distinguish between filmwise and dropwise condensation
b) Explain the thermal boundary layer formation for flow oyer a flat plate with sketch.

A 6 m long and 8 cm diameter horizontal hotyaterDipe passes through a large room whose temperature is $20^{\circ} \mathrm{C}$. Tf the outer surface temperature of the pipe is $70{ }^{\circ} \mathrm{C}$, determine the rate of heat loss from the pipe by natural convection. The properties of air at $45{ }^{\circ} \mathrm{C}$ are, $\mathrm{K}=0.02699$ $\mathrm{W} / \mathrm{mK}, \operatorname{Pr}=0.7221, v=1.749 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$, ©se correlation $\mathrm{Nu}=[0.6+(\mathrm{A} / \mathrm{B})]^{2}$ Where, $\mathrm{A}=0.387(\mathrm{Gr} . \mathrm{Pr})^{(1 / 6)}$ and $\mathrm{B}=\left[1+(0.559 / \mathrm{Pr})^{(9 / 16)}\right]^{(8 / 27)}$

Q3) a) Explain following Laws of Radiation 8
i) Stefan - Boltzmann Law
ii) Plank's Law
iii) Kirchoff's Law
iv) Wein's Dispiacement Law
b) The radiation shape factor of the circular surface of a thin hollow cylinder of 10 cm diameter and 10 cm length is 0.1716 . What is the shape factor of the cused surface of the cylinder with respect to ifself?
c) Two Darallebplates have emissivity of 0.8 and 0.5 . Arradiation shield having same emissivity on both sides is placed between them. Calculate the emissivity of the shield in order to reduce the radiation losses form systen to one tenth of that of without shield.

Q4) a) Explain the following terms
i) Gray Body
ii) Monochromatic emissivity
iii) Radiation Intensity
iv) Radiocity
b) A Furnace Cavity which is in the form of cylinder of 75 mm diameter and 150 mm ength is opentat one end to large surrounding that is at $27^{\circ} \mathrm{C}$. The curved-surface -3 and bottom surface -2 are aproximated as black surfaces and eleetrically heated The curved surfoe -3 and bottom surface -2 are maintained at $1350^{\circ} \mathrm{C}$ and $1650^{\circ} \mathrm{C}$ respectively and outer surfaces are well insulated. Take view factor- $\mathrm{F} 23=0.06$, Estimate heat loss by radiation from opening-1 of the furnace
c) A pipe carrying steam, having an outside diameter of 20 cm runs in a large room and is exposed to air at a temperature of $30^{\circ} \mathrm{C}$. The pipe surface temperature is $200^{\circ} \mathrm{C}$ Find the total heat iostreer meter length of the pipe taking the emissivity of the pipe surface ass 0.8 and convective heat transfer coefficient as $7 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$.

Q5) a) State and Explain Fick's Law of Differsion
b) A vessel contains a binary mixture, of O_{2} and N_{2} with partial pressure in the ratio 0.21 and 0.79 at $15^{\circ} \mathrm{C}$. The total pressure oif the mixture is 1.1 bar. Calculate the following
i) Molar concentrations
ii) Mass densities
iii) Mass fractions and
iv) Molar fraction of each species
c) Write applications of mass transfer

Q6) a) Derive thegeneral mass transfer equation in cartesian coordinates.
b) Hydrogengas is maintained at pressures of 2.4 bar and 1 bar on opposite sides of a plastic membrane 0.3 mm thick. The binary diffusion coefficient of hydrogen in the plastic is $8.6 \times 1.0 \% \mathrm{~m}^{2} / \mathrm{s}$ and solubility of hydrogen in the membrane is 0.00145 kg moles m^{3}-bar. Calculate, under xiniform temperature conditions of $24^{\circ} \mathrm{C}$. the following
i) Molar Concentrations of hadrogen at the opposite faces of the membrane and
ii) Molar and mass diffussion flux of hydrogen through the membrane.
c) Explain modes of mass ralsfer

Q7) a) Derive an expression for Loogarithmic Mean Temperature Difference (LMTD) for parallelflowheat exchanger.
b) Draw temperature profile diagrams for parallel flow heat exchange and condensen.
c) In a double pipe beat exchanger hot water flows at the rate of $5000 \mathrm{~kg} / \mathrm{h}$ and gets cooled from $95^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$. At the same time $59000 \mathrm{~kg} / \mathrm{h}$ of cooling water at $30^{\circ} \mathrm{C}$ enters heat exchanger. The flow conditions are such that overall heat transfer coefficient remains çonstant at 2270 $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the heat transfer area required aded the effectiveness, assuming two streams are in parallel flow. Assugre for both the streams $\mathrm{C}_{\mathrm{p}}=4.2 \mathrm{KJ} / \mathrm{kg} \mathrm{K}$.

Q8) a) Derive an expression for effectiveness for parallel flow heat exchanger in terms of heat capacity ratio ($\mathrm{C}_{i}, \mathrm{C}_{\mathrm{m}} \mathrm{C}_{\max }$) and Number of Transfer Unit (NTU)
b) What are the types of heat exehanger?
c) A counter-flow double pipe heat exchanger using superheated steam is used to heat water at the rate of $10500 \mathrm{~kg} / \mathrm{h}$. The stem enters the heat exchanger at $180^{\circ} \mathrm{C}$ and leaves at $130^{\circ} \mathrm{C}$. The inlet and exit temperatures of water are $30^{\circ} 0^{\circ}$ and $80^{\circ} \mathrm{C}$ respectively. If Overall Heat Transfer Coeffieient fromsteam to water are $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively. If overall hêat transfer coefficient from steam to water is $814 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$, Calculate the heat transfer area. What would be the increase ingarea if the fluid flows were parallel?

