P8588

T.E. (Mechanical/ Mechanical S/W) NUMERIGAL \& STATISTICALMETHODS
 (2019 Patterni) (Semester - I) (302041)

Time : 1 Hour]
[Max. Marks : 30
Instructions to the candidates :

1) Answer Q1 or Q2, Q3 or Q4.
2) Figures to the right side indicate full marks.
3) Use of electronic calculator is allowed.
4) Assume suitable data, if necessary.

Q1) a) Draw the flow chart of Bisection Method using accuracy criteria. [6]
b) Solve the following simultaneous equations using Tri diagonal matrix algorithm (TDMA).
$5 x_{1}-x_{2}=5.5$
$-x_{1}+5 x_{2}-x_{3}=5$,
$-x_{2}+5 x_{3}-x_{4}=11.5$,
$-x_{3}+5 x_{4}=16.5$

Q2) a) The upward velocityof a rocket is given at three different times in the following table :

Time, $1(\mathrm{~s})$	Velocity, $\mathrm{v}(\mathrm{m} / \mathrm{s})$
5	106.8
8	1772
12	279.2

The velocity data is approximated by a polynomial as, $v(t)=a_{1} t^{2}+a_{2} t$ $+a_{3} .5 \leq t \leq 12$. Find the values of a_{1}, a_{2} and a_{3} using Gauss elimination with partial pivoting.
b) Find the fourth root of 32, using Newton Raphson Method. Take accuracy 0.01.

Q3）a）Solve the differential equation by Euler＇s method to solve the initial value problem over the intervalf $=0$ to 2 with $h=0.5$ where $\frac{d y}{d x}=y x^{2}-1.1 y ;$ where $y(0)$ 三夫见．
b）Given the values of $u(x, y)$ on the boundary of the square is as follows． Evaluate the function $u(x, y)$ satisfying the Laplace equation $\nabla^{2} u=0$ ． Boundary conditions．Fop $=1000$ ；Bottom $=500$ ；Left 2000；Right $=$ 500 with 3×3 grid points．

Q4）a）A second order ODE is transformed into first order ODE as，$d y / d x=z$ and $z z d x=0.5 x-y^{2}$ ．
Given that $y(0)=2$ and $z(0)=0$ ．Estimate the value of y and z at $x=0,2$, take $h=0.1$ ．
b）Dran the flow chart for solving the Laplace Equation．

