T.E. (Mechanical/Mechanical- Sandwich) MECHATRONICS
 (2019 Pattern) (Semester - I) (302044)

Time: 2½ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 om Q. No. 8.
2) Use of drawing instruments, electronic pocket calculators are allowed.
3) Figures to the right indicate full marks.
4) Assume suitable data, if necessary.

Q1) a) Explain application of mechatronics: Anti-lock Breaking System (ABS).
b) Compare open loop and close loop control system with block diagram and applications.
c) Reduce the block diagram and find the transfer function of the following Figure.

OR

Q2) a) Find the transfer function of the given system for $F(t)$ input and $X(t)$ output from the following Figure.

b) Explain washing/machine as an application of mechatronics system.
c) By using Routh Herwitz criterion, determine the rangeof K that would confirmelosed loop stability of system given by Transfer Function

$$
\begin{equation*}
\frac{\sigma^{0} 1}{S_{o}^{4}+3 S^{3}+3 S^{2}+2 S+K} \tag{8}
\end{equation*}
$$

Q3) a) \downarrow Explain transient response specrication ${ }^{\circ}$ and define delay time, rise time, peak time.
b) Explain Bode plot with magnitudeplot and phase plot.
c) For the system with transfer function $\frac{1}{(S+5+5 j)(S+5-5 j)}$. Draw the pole and zero plot and find damping ratio, natural frequency, peak time, maximum oyershoot.

Q4) a) Explain frequency response specifications such as resonant peak, resonant frequency, band width.
b) Compare time response and frequency responseranalysis.
c) $\frac{C(s)}{R(s)}=\frac{4 s+6}{s^{2}+4 s+6}$ For the transfer function of second order system presented by above equation, determine
i) location of poles and zeros
ii) damping factor
iii) comment of stability.

Q5) a) Distinguish between P1 controllercand PID controller.
b) Explain Proportional-Derivative controller with a block diagram. [5]
c) An integral controller is used for speed control with a set point of 15 rpm within a range of 1θ to 20 rpm . The controller output is 23% initially. The constant $K_{*}-\frac{x}{=}-0.15 \%$ controller output per second per percentage error. If the speed jumps to 12.5 rpm , calculate the controller output after β sec for constant e_{p}.

Q6) a) State the advantages and application of PID controller.
b) Explain ON-OFF controller action with block diageam along with neutral zene. Also state the suitable application of ON-OFF controller.
c) For.a proportional controller, the controllersvariable is a process temperature with a range of $50^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$ and a set point of $73.5^{\circ} \mathrm{C}$. Under nominal conditions, the set perint is maintained with an output of 50%. Find the controller output having proportional gain of 2 , if the temperature is :
i) $61{ }^{\circ} \mathrm{C}$
ii) $122^{\circ} \mathrm{C}$ and
iii) A ramping tenperature of $(82+5 \mathrm{t})^{\circ} \mathrm{C}$.

Q7) a) What is the Internal Architecture in any PLC?
b) Explain the selection criteria of PLC.
c) Draw a ladder diagram for the following operation. Two puish buttons PB_{1} and PB_{2} are used to operate Red and Yellow light,
i) When PB_{1} is pushed Red lamp should beon and it will continue to be ON till PB_{2} is pushed.
ii) When PB_{2} is pushed, Yellow lighty shoufd be ON and it will continue to be ON till PB_{1} is pushed. O°
iii) If PB_{1} and PB_{2} is pushed simultaneously, no lamp should be ON

Q8) a) Explain counters in PLC with a meat sketch and explain UP and DOWN counters.
b) Explain Input module and oueput module in PLC.
c) Write ladder logic for a simple traffic light controller for the following sequence of operations
i) Turn Green ONfor 45 seconds
ii) Turn Yellow ON for 5 seconds
iii) TMOR Red ON for 50 seconds
iv) Repeat the sequence

$$
\mathscr{\&} \mathscr{H}
$$

