[59261/149
 T.E. (Mechanical/Mechanical - Sandwich) HEATAND MASS TRANSFER
 (2019 Pattern)(Semester - I) (302042)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Solve Q. 1 or Q.2, Q.3or Q.4, Q.5 or Q.6, Q. 7 or Q.8.
2) Draw reat diagnan wherever necessary.
3) Use of seientific calculator is allowed.
4) Assume suitable data if necessary.
5) Figures to the right indicate full marks.

Q1) a) The crankcase of an IC Engine measuring $0.8 \mathrm{~m} \times 0.2 \mathrm{~m}$ may be assumed as a flat plat. The engine runs at a speed of $25 / \mathrm{m} / \mathrm{s}$ and the crankcase is ccooled by the air flowing past it at the same speed. Calculate the heat ${ }^{x}$ loss from the crank surface maintainednat $85^{\circ} \mathrm{C}$ to the ambient air at $15^{\circ} \mathrm{C}$. Due to road induced vibration, the boundary layer becomes turbulent from the leading edgeitselfo
Properties of the air $50^{\circ} \mathrm{C}$
$\mathrm{v}=17.95 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, $\mathrm{k}=0.02824 \mathrm{~W} / \mathrm{mK}$, $\mathrm{Pr}=0.698$
Use $\mathrm{Nu}=0.036(\mathrm{Re})^{0.8}(\mathrm{Pr})^{1,3}$
b) Explain the physical significance of Reynold's Number in case of Forcéd convection and Grashof's Number in case of Natural Convection. [8] OR
Q2) a) A Nuclear reactor with its core constructed of parallel vertical plate 2.2 m high and 1.45 wide has been designed on free convection heatimg of liquid bismuth. The maximum temperature of the plate surfacesis limited to $960^{\circ} \mathrm{C}$, while the lowest allowable temperature of bismuth is $340^{\circ} \mathrm{C}$. Calculate the maximum possible heat dissipation from both sides of each plate. For the convection coefficient the correlation is $\mathrm{Nu}=0.13(\mathrm{Gr} . \mathrm{Pr})^{1 / 3}$ Where the properties evaluated at mean film temperature of $650^{\circ} \mathrm{C}$ for bismuth are :
$\rho=10^{4} \mathrm{~kg} / \mathrm{m}^{3}$,
$\mu=3.12 \mathrm{~kg} / \mathrm{m}-\mathrm{h}$, $\mathrm{Cp}=150.7 \mathrm{~J} / \mathrm{kgK}$, $\mathrm{k}=13.02 \mathrm{~W} / \mathrm{mK}$.
b) Mention difference between Boiling and Condensation. Explain pool boiling and Regimes of pool boiling

Q3) a) Explain the following terminology of Radiation.
i) Emissive Power
ii) Emissivity
iii) Wein's Displacement Láw
iv) Stefan-BoItzmanntaw
b) Formulate the, Radiation Heat flow equation for two concentric infinitely long Cylinders. Det r1 and r2 radii of inner and outer cylinder, T1 \& T2 are surface temperature inner and outer cylinder with $\varepsilon 1 \& \varepsilon 2$ be respectyve enissivity. Also consider shape factor if required.

OR

Q4) a) Deternine the heat transfer rate per unit area dueto radiation between two infinite long parallel planes. The First plane has an emissivity $=0.4$ \& ${ }^{\prime}$ t is maintained at $200^{\circ} \mathrm{C}$. The emissivity of second plane is 0.2 and it is maintained at $30^{\circ} \mathrm{C}$. A radiationshield having $\varepsilon=0.5$ is introduced between the given planes. Find the percenage reduction in the heat transfer rate \& the steady state temperature attained by the radiation shield. [10]
b) Derive relation for radiationbetweentwo finite black surface and explain term shape factor.

Q5) a) State Fick's Law of Diffusion and Explain Mass diffusion coefficient.[6]
b) Write Mass diffusion.Equation in Cartesian coordinates deviâtion, cylindrical coordinates and Spherical Coordinates with Boundary and Initial Condition.
c) Define following Terminology:
i) Mass Diffusion velocity
ii) Molar Diffusion velocity
iii) Mass Diffusion Flux
iv) Molar Diffusion Flux

Q6) a) Oxygen at $25^{\circ} \mathrm{C}$ and pressure of 2 bar is flowing through rubber of inside diameter 25 mm and wall thickness 2.5 mm . The diffusion of oxygen in rubber is $3.12 \times 10^{-3} \mathrm{kgmol} / \mathrm{m}^{3}$ bar. Find the loss of O^{2} diffusion per meter length of pipe.
b) Draw Phase Diagram andex x plain different phases.
c) Write down the physical origins of mass transfer and enlist the applications of mass transfer.

Q7) a) Determine the area required in parallel flow heat exchanger to cool oil from $60^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ using water available at $20^{\circ} \mathrm{C}$. The outlet temperature of the water is $26^{\circ} \mathrm{C}$. The rate of flow of oil is kg / s. The specific heat of the oildis. $2200 \mathrm{~J} / \mathrm{kgK}$. The overall heat transfer coefficient $\mathrm{U}=300 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Gompare the area required for a counter flow exchanger.
[10]
b) Derive LMTD for parallel flow heat exchanger and mention assumptions considered for derivations.

Q8) a) A counter flow heat exchanger is used to cool $3600 \mathrm{~kg} / \mathrm{hrs}$ of oil $(\mathrm{Cp}=2000 \mathrm{~J} / \mathrm{kg} \mathrm{K})$ at $150^{\circ} \mathrm{C}$ with the help of water $(\mathrm{Cp}=4178 \mathrm{~J} / \mathrm{kg} \mathrm{K})$ flowing at the rate of $3710 \mathrm{~kg} / \mathrm{Hr}$. Water enters at 298 K . The overall heát transfer coefficient is $500 \mathrm{~W} / \mathrm{m}^{2}$ and the surface area is $4.872 \mathrm{~m}^{2}$. Calculate the exit temperature of oil \& water by using:
i) LMTD Method
ii) NTU-effectiveness Method.
b) Explain Temperature and Radiation Effects inHeat Exchanger Design.[5]

$\rightarrow \quad \rightarrow$

