\square

T.E. (Mechanical/Mechanical Sandwich) MECHATRONICS (2019 Pattemi) (Semester - I) (302044)

Time: 2½ Hours]
[Max. Marks : 70

Instructions to Candidates:

1) Answer Q.No. 1 or Q.No. 2, Q.No. 3 or Q.No. 4, Q.No. 5 or Q.No. 6, Q.No. or Q.No.8.
2) Figuresto the right indicate full marks.
3) Use Graph paper for Graphical solution.
4) Use of electronic pocket calculator is allowed.
5) Assume suitable data if necessary.

Q1) a) Using suitable diagram explain the appfication of Automotive Engine Management System.
b) Reduce the block diagram in Fig. (a) And determine the transfer function: $\mathrm{Y}(\mathrm{s}) / \mathrm{X}(\mathrm{s})$.

Fig. (a)
c) Find the poles and zeros of the transfer function $G(S)=\frac{s^{2}+3 s+2}{(s+4)\left(s^{2}+6 s+25\right)}$ and sketch polezero plot.

Q2) a) Compare open loop and closed looprontrol system.
b) By using Routh-Hurwitz stability criterion determine the stability of the system represented by the characteristic equation $9 S^{5}-20 S^{4}+10 S^{3}-S^{2}-9 S-10=0$. Comment on the location of roots of characteristics equation.
c) Define "TransferFunction" and discuss its importance in the context of control of a mechatronie system.

Q3) a) Define the following terms:
i) \% Overshoot
ii) Steady state errors
iii) Damping Frequency
iv) Natural Frequency
[8]
b) Determine the values of delay time, rise time, peaktime, settling time and \% Qvershoot when the control system shown in Fig. (b) is subject to a unit step input.
unit step input.

Fig.(b)

OR
Q4) a) Compare tome doniain and frequency domain techniques foranalysis of systems.
b) Write a short note on the following point:
i) Gain Margin
ii) Phase Margin
iii) Bode Plot

Q5) a) Using a suitable block diagram explain the working of PID control in parallel form.
b) Draw the controller response fok given error graph as shown in Fig. (c) $K_{\mathrm{P}}=5, \mathrm{~K}_{\mathrm{D}}=0.5 \mathrm{~s}$ and $\mathrm{P}_{\mathrm{O}}=26 \%$.

Fig. (c)
[10]

OR
Q6) a) Explain Derivation control with neat diagram and equation. Why derivative controller cannot be used åone?
b) For a proportional controHer, the controller variable is a process temperature with a range ai $50^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$ and a set point of $73.5^{\circ} \mathrm{C}$. Under nominal conditions, the set point is maintained with an output of 50%. Find the controller output having proportional gain of 2 , if the temperature is:
i) $61^{\circ} \mathrm{C}$
ii) $122^{\circ} \mathrm{C}$ and
iii) A ramping temperature of $(82+5 t)^{\circ} \mathrm{C}$.

Q7) a) List the criterion for the selection of a PLC and explain any two criterions in details.
b) In a certain bank each of three bank officers has à únique key to the vault. The bank rules requires that two out of the three officers be present when the vault is opened. Draw the laddèr diagram for a relay logic circuit that will unlatch the door and tuin on theflight when the three keys are inserted.

Q8) a) Using a suitable example, draw a ladder diagram and explain how timer is implemented.
b) A circuit involves four NO typéswitches P1, P2, S1 and S2 and a DC motor (M). Draw a ladder diagram such that the said circuit satisfies following objectives:
i) When P1 ispushed the circuit shall turn ON and shall continue to remain QNuntilR2 is pushed.
ii) Wher S1 is pushed and S2 is not pushed then Motor is ON in clockwise direction.
iii) When S2is pushed and S 1 is not pushed then Motor is ON in antielockwise direction.
iv) When P2 is pushed the circuit turns OFF.

