T.E. (Mechanical/Mechanical Sandwich) HEAT AND MASS TRANSFER (20107 Rattern) (Semester - I) (302042)

Time: $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Solve Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrants must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of Calculator is allowed.
5) Assume Suitable data if necessary.

Q1) a) A vertical plate is maintained at $40^{\circ} \mathrm{C}$ in $20^{\circ} \mathrm{C}$ still air. Determine the height at which the boundary layer will turn turbulent if turbulence sets in at A Gr. $\mathrm{Pr}=10^{9}$. Repeat the problem for water flow at film temperature of $30^{\circ} \mathrm{C}$. Comment on the results of solution.
b) Explain in brief (Any two)
i) Local and average Heat Transfor coefficient
ii) Hydrodynamic and Thermaboundary layer
iii) Critical Heat Flux
iv) Significance of anty 2 non dimensionless numbers

OR
Q2) a) Explain the types of boiling and pool boiling phenomenon in detaiswith neat sketch of boiling curve.
b) Air at atmospheric pressure and $40^{\circ} \mathrm{C}$ flows with velocityof $\mathrm{U}=5$ $\mathrm{m} / \mathrm{sec}$ over a 2 m long flat plate whose surface is kept at á uniform temperature of $120^{\circ} \mathrm{C}$. Determine the average heat transfer coefficient over 2 m length of plate. Also determine the rate ∂f^{\prime} heat transfer between the plate and air per 1 m width of plate Air at 1 atm . And $\left.80^{\circ} \mathrm{C}, \mathrm{v}=2.107 \times 10^{5} \mathrm{~m}^{2} / \mathrm{sec}, \mathrm{k}=0.03025 \mathrm{~W} / \mathrm{mk} \operatorname{Pr}=0.695\right)$.
Q3) a) The energy received from the sun at the earths atmosphere has been measured as $1353 \mathrm{~W} / \mathrm{m}^{2}$. The diameter of the earth $=1.29 \times 10^{7} \mathrm{~m}$. Diameter of the sun $=1.39 \times 10^{9} \mathrm{~m}$. Mean distance $=1.5 \times 10^{11} \mathrm{~m}$. Estimate the emissive power of the sun and the surface temperature assuming it to be black. Assuming that the source ofenergy for the earth is from the sun and earth to be black, estimate the temperature of the earth.
b) Explain in brief
i) Kirchoffs Law
ii) Stefan Boltzmans law
iii) Wiens Displacement law
iv) Shape Factor
v) Electricaranalogytio r radiation

OR
Q4) a) Two large parallet plates with $\varepsilon=0.5$ each are maintained at different temperatures and are exchanging heat only by radiation. Two equally larg radiationshields with surface emissivity 0.05 are introduced in parallel to the plates; find the percentage reduction in net radiative heat transfer.
b) Define shape factor algebra and explain any 4 salient features of shape factor.
Q5) a) Explain Fick's law for mass diffusion,
b) The molecular weights of the twمcomp@eients A and B of a gas mixture are 24 and 28 respectively. The molecular weight of gas mixture is found to be 30 . If the mass concentration of the mixture is $1.2 \mathrm{kgm}^{3}$, determine the following
i) Molar fractions
ii) Mass fractions
iii) Total pressure if temperature of mixture is 290 K

Q6) a) Explain in brief convective mass transfer and Explain the term conservation of species.
b) Hydrogen gas is maintained at pressure of 2.4 bars and 1 bifon opposite sides of a plastic membrane 0.3 mm thick. The binary diffusion coefficient for hydrogen in the plastic is $8.6 \mathrm{x} 10-8 \mathrm{~m}^{2} / \mathrm{s}$ and solubility of hydrogen in the membrane is $0.00145 \mathrm{~kg} \mathrm{~mole} / \mathrm{m}^{3}$-bar. (nollecularweight of hydrogen $-2 \mathrm{~kg} / \mathrm{kg}$ mole)
Calculate under uniform conditions of $24 \hat{C}$, the following:
i) Molar concentration of hydrogen at opposite face of membrane
ii) Molar and mass diffusion of hydrogen through membrane

Q7) a) Derive LMTD for parallel flow heat exchanger.
b) In a double pipe heat exchanger bôt water flows at the rate of $5000 \mathrm{~kg} / \mathrm{h}$ and gets cooled from $95^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$. At the same time $50000 \mathrm{~kg} / \mathrm{h}$ of cooling water at $30^{\circ} \mathrm{C}$ enters heat exchanger. The flow conditions are such that overall heat transfer coefficient remains constant at $2270 \mathrm{~W} /$ $\mathrm{m}^{2} \mathrm{~K}$. Determine the heã transfer area required and the effectiveness, assuming two streamsare in parallel flow. Assume for both the streams $\mathrm{C}_{\mathrm{p}}=4.2 \mathrm{~kJ} / \mathrm{kgK}$.

OR

Q8) a) DerveLMTD for Counter flow heat exchanger.
b) A counter flow double pipe heat exchanger uses superheated steam to heat water at the rate of $10500 \mathrm{~kg} / \mathrm{h}$. The steam enters the heat exchanger at $180^{\circ} \mathrm{C}$ and leaves at $130^{\circ} \mathrm{C}$. The inlet and exitotemperatures of water are $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, If the overall heat transfercoefficient from steam to owater is $814 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$. Calculate the heat transfer area. What would be the increase in area if the fluid passes areqin parallel?

