Total No.	of Question	s:8]
-----------	-------------	------

PD4163

SEAT No.:	
[Total	No. of Pages : 4

[6402]-124

S.E. (Mechanical)/(Automation & Robotics Engg.)/(Automobile & Mechanical Engg.)/(Mechanical Sandwich)
KINEMATICS OF MACHINERY

(2019 Pattern) (Semester - IV) (202047)

Time : 2½ *Hours*]

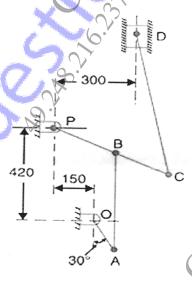
[Max. Marks : 70]

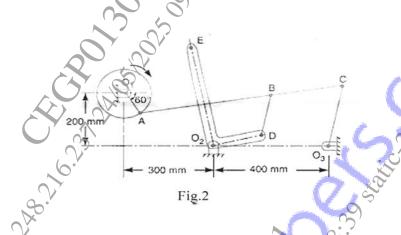
Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) For the engine mechanism shown in Fig. 1. The crank OA rotates uniformly at 180 r.p.m. in clockwise direction. The various lengths are OA = 150mm; AB = 450 mm; PB = 240 mm; BC = 210 mm; CD = 660mm. [10]

Using relative velocity and acceleration method. Determine:

- i) Volocity of the slider
- ii) Acceleration of the slider D
- iii) Angular acceleration of link CD




Fig.1

b) Explain Coriolis component of acceleration with neat sketch.

[7]

OR

- Q2) a) The mechanism of a wrapping machine, as shown in Fig.2, has the following dimensions: $O_1A = 100$ mm; AC = 700mm; BC = 200mm; $O_3C = 200$ mm; $O_2E = 400$ mm; $O_2D = 200$ mm and BD = 150mm. The crank O_1A rotates at a uniform speed of 100 rad/s. Find [10]
 - i) Velocity of the point B
 - ii) Velocity of point D
 - iii) Velocity of point E of the bell crank lever by instantaneous Center method.

- b) Explain with neat sketch Kennedy theorem.
- Q3) a) Synthesize a four-bar mechanism using inversion method with input link and output link for 3 successive positions. Assume following data. [10]
 - i) Length of the fixed link is 100 mm and input link length is 30 mm

[7]

[8]

ii) Initial position of input link is 30°,

$$\theta_{12} = 30^{\circ}, \ \theta_{13} = 60^{\circ} \text{ (Input angle } = \theta\text{)}$$

- iii) $\phi_{12}^{12} = 20^{\circ}$, $\phi_{13}^{13} = 40^{\circ}$ (Output angle = ϕ)
- b) Explain the following terms:
 - i) Type synthesis
 - ii) Number synthesis
 - iii) Dimensional synthesis

OR

- Q4) a) A four-bar mechanism is to be designed, by using three precision points, to generate the function $y = x^{1.5}$, for the range $1 \le x \le 4$ Assuming 30° starting position and 120° finishing position for the input link and 90° starting position and 180° finishing position for the output link, find the values of x, y, θ and φ corresponding to the three precision points. [10]
 - b) Explain the following terms:
 - i) Function generation
 - ii) Path generation
 - iii) Motion generation
 - iv) Structural errors

[6402]-124

A pinion having 30 teeth drives a gear having 80 teeth. The profile of the **Q5**) a) gears is involute with 20° pressure angle, 12 mm module and 10mm addendum. [10] find: Length of path of contact, i) Length of are of contact, ii) iii) Contact ratio. b) [7]

- Define in case of Sour gear:
 - i) Module
 - Addendum ii)
 - Circular Pitch iii)
 - Pressure angle
 - v) Path of contact
 - Arc of Contact
 - Contact ration

In an epicyclic gear train of the 'sun and planet' type shown in Fig.3. The *Q***6**) a) Annulus gear D rotates at 300 rpm about the axis of fixed sun gear B which has 80 teeth. A three-Armed spider is driven at 180rpm. Determine the number of teeth required on planet C. [10]

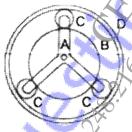


Fig3

- Define in case of helical gear.
 - Helix angle i)
 - Transverse circular pitch ii)
 - iii) Transverse module
 - Normal Circular Pitch iv)
 - **Axial Pitch** v)
 - vi) Lead

[6402]-124

Normal Module vii)

9.28.29 About 10.25 About 10.2

<i>Q7</i>)	a)	A cam is to be designed for a knife edge follower with the following data: [10]			
		i)	Cam lift = 40 mm during 90 of cam rotation with simple hard		
		-/	motion.		
		ii)	Dwell for the next 30°		
		iii)	During the next 60% of cam rotation, the follower returns	to its	
			original position with simple harmonic motion.		
		iv)	y) Dwell during the remaining 180°		
			Draw the profile of the cam when the line of stroke is offset 20mm		
		from the axis of the cam shaft. The radius of the base circle of the			
	1 \	.	carn is 40 mm.	507	
	b)	Exp	lain with sketches the different types of cams and followers.	[8]	
			OR OR		
Q 8)	٥)	Evnl	6.	[10]	
Qo)	a)	Expl i) -	Types of automation with suitable example	[10]	
		in	Different type of transfer mechanism		
	b) 1	Writ	te Short note:	[8]	
	- /	i)	Al's Role in Manufacturing industry	£-3	
		ii)	Buffer Storages.		
			CE Albana		
			4 189.188.188.188.188.188.188.188.188.188.		
くつ					
[640)2]- [124	4		

Total No.	of Question	s:8]
-----------	-------------	------

PD4163

SEAT No.:	
[Total	No. of Pages : 4

[6402]-124

S.E. (Mechanical)/(Automation & Robotics Engg.)/(Automobile & Mechanical Engg.)/(Mechanical Sandwich)
KINEMATICS OF MACHINERY

(2019 Pattern) (Semester - IV) (202047)

Time : 2½ *Hours*]

[Max. Marks : 70]

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) For the engine mechanism shown in Fig. 1. The crank OA rotates uniformly at 180 r.p.m. in clockwise direction. The various lengths are OA = 150mm; AB = 450 mm; PB = 240 mm; BC = 210 mm; CD = 660mm. [10]

Using relative velocity and acceleration method. Determine:

- i) Volocity of the slider
- ii) Acceleration of the slider D
- iii) Angular acceleration of link CD

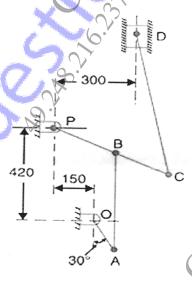


Fig.1

b) Explain Coriolis component of acceleration with neat sketch.

[7]

OR