S.E. (Automobile \& Mechanical/Automation \& Rebotics/Mechanical S.W) KINEMATYĆS OF MACHINERY (2019 Páttern) (Semester - IV) (202047)

Time: 2½ Hours
[Max. Marks : 70
Instructions to the candidates:

1) Answer Q.1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn whenever necessary.
3) Figures to the right indicate full marks.
4) Use of electronic non programmable calculator is allowed.
5) Assume suitable data if necessary.

Q1) a) Explain velocity image principe with neat sketch.
b) The length of various links of mechanism as shown in figure are $\mathrm{OA}=0.3 \mathrm{~m}, \mathrm{AB}=1 \mathrm{~m}, \mathrm{CD}=0.8 \mathrm{~m}, \mathrm{AC}=\mathrm{CB}$. The horizontal distance from point O and axis of vertical stider is 0.6 m . Determine for the given configuration
i) Velocity of slider B
ii) Velocity of slider D
iii) Angular velocityof CD
iv) Angular velocity of AB

If OA rotates at 60 ropm clockwise use instantaneous centre method.

Q2) a) Explain with neat sketch Kennedy's theorem.
b) In the mechanism shown, the slider D is constrained to move on a horizontal path. The crank OA i'sotating at 180 rpm counter clockwise increasing at a rate of $50 \mathrm{rad} / \mathrm{s}^{\circ}$. The dimensions of links are $\mathrm{OA}=180$ $\mathrm{mm}, \mathrm{CB}=240 \mathrm{~mm}, \mathrm{AB}=360 \mathrm{~mm}, \mathrm{BD}=540 \mathrm{~mm}$. For the given configuration find
i) Velocity of sliderD,
ii) Ang(itar velocity of links AB, CB and BD ,
iii) Angular aceeleration of BD.

Q3) a) Explain with neat sketches three position synthesis of slider crank mechanism using retatiye pole method.
b) Determine the Chebychey spacing for function $y=2 x^{3}-x$ for the range of $0 \leq x \leq 4$ where four precision points are required. EDor three precision points determine

OR
Q4) a) Explain in short :
i) Type synthesis,
ii) Number synthesis,
iii) Dimensional synthesis
b) Determine the Chebychev spacing for function $y=\log _{10} X$ for the range of $1 \leq x \leq 5$ where three precision points. are required to be considered.

Q5) a) Compare between Involute and Cycloidal gear tooth profile.
b) Two mating gears have 20 and 40 involute teeth of module 10 mm and 20° pressure angle. The addenduar on each wheel is to be made of such a length that the line of contacton each side of the pitch point has half the maximum possible length. Determine the addendum height for each gear wheel, length of the:path of contact, arc of contact and contact ratio.

Q6) a) State and explain Law of gearing with neat sketch.
b) Two invoute gears in mesh have a module of 8 mm and a pressure angle of 20% The larger gear has 57 while pinion has 23 teeth. If addenda on pinion and gear wheels are equal to one module, Find contact ratio, angle of action of pinion and wheel, ratio of sliding toreiling velocity at beginning/ end of contact and at pitch point.
Q7) a) Defineautomation. Why automation is important for any industry?
b) The fóllowing data relates to Knife Edge follower.

The follower to move outward through a distance of 20 mm during - 120°
The follower to dwell for the next 60°
The follower to return to its inititial posifion during - 90°
The follower to dwell for theremaining 90° of cam rotation.
The cam is rotating clofkwise ata uniform speed of 500 rpm .
The minimum radius of the ©am is 40 mm and line of stroke of the follower is offset 15 mm from the axis of the cam and displacement of the follower is to take place with uniform and equal acceleration and retardation both the inward and return stroke.

Q8) a) Write short note on:
i) Assembly line balancing
ii) Buffer storages
b) A cam operates a roller, inline reciprocating follower while rotating at 300 rpm . The further specifications are: Mihiman radius of the cam $=25 \mathrm{~mm}$, Lift of follower $=30 \mathrm{~mm}$, Diameter of roller $=15 \mathrm{~mm}$ Angle of lift $=120^{\circ}$ (Nature of lift is S.H.M.), Outerdweilangle $=30^{\circ}$, Angle of return $=150^{\circ}$ (Nature of return is uniform açelération and retardation where acceleration is equal to retardation in-magnitude). Draw the cam profile.

