\square

[6179]-323

S.E. (Automobile and Mechanical) FLUD MECHANICS
 (2019 Pattern) (Semester-IV) (202049)

Time : $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks : 70

Instructions to the eandidates

1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Use of electronic pocket calculator is allowed.
5) Assume suitable data, if necessary.

Q1) a) Dístinguish between :
i) Uniform and Non-uniform Flow
ii) Laminar \& Turbulent Flow
b) Derive a generalized continuity equation for three-dimensional flow field.
c) Given that $u=x^{2}-y$ and $w=-2 x y$, determine the stream function and potential function for the flow.

Q2) a) Explain the following properties with their mathematical properties:
i) Velocity Potential
ii) Stream function
b) Prove that the velocity potential line and stream lige are orthogonal to each other.
c) The stream function for a two-dimensional flow is given by $\psi=x^{2}-y^{2}$. Calculate the velocity and acceleration at $\mathrm{P}(2,2)$.

Q3) a) What is Pitot tube? How Pitot StaticTube is used measure velocity of flow at any point in a pipe or channel?
b) State Bernoulli's Theorem for asteady flow of an incompressible fluid flow. Derive Bernoulli's equatioñ from Euler's equation along the stream line. Also, state the assumptions made while deriving it.
c) Crude oil of viscosity 0.96 poóise flows through a circular pipe of diameter 15 cm and the length of pipe is 15 cm . Determine the difference in pressure at the two ends of the pipe if discharge is $4 \mathrm{lit} / \mathrm{s}$. Also determine shear stress at the pipe wall.

OR

Q4) a) What are the characteristics of laminar flow?
b) Prove that forp steady laminar flow through pipe, the velocity distribution achoss thesection is parabolic and the average velocity is half the maximum velocity.
c) A vertical venturi meter carries a liquid of relative density 0.8 and has inlet andathroat diameter of 150 mm and 75 mm . The pressure connection at Ahroat is 150 mm above that at the inlet. If the actual rate of flow is 40lit/s xand the C_{d} is 0.96 , Calculate the bressure difference between inlet and throat in $\mathrm{N} / \mathrm{m}^{2}$.

Q5) a) Explain the following term witn theirgraphical representation:
i) Hydraulic Grade Line.
ii) Total Energy Line
b) Derive Dupit's equation.
c) For the following yelocity-profiles, determine whether the flow is attached, detached or on the verge of separation.
i) $\frac{u}{U}=2\left(\frac{y}{\delta}\right)=\left(\frac{y}{\delta}\right)^{2}$
ii) $\frac{u}{U}=-2\left(\frac{y}{\delta}\right)+\left(\frac{y}{\delta}\right)^{3}+2\left(\frac{y}{\delta}\right)^{4}$
iii) $\frac{u}{U}=2\left(\frac{y}{\delta}\right)^{2}+\left(\frac{y}{\delta}\right)^{3}-2\left(\frac{y}{\delta}\right)^{4}$

OR

Q6) a) Define the following term with brief explanations,
i) Streamline body
ii) Bluff body
b) What do you mean by Boundary Layer Separation? Write the methods of preventing the separation of boundary layer?
c) A pipe of diamettr 0.4 ma and of length 2000 m is connected to a reservoir at one end. The other end of the pipe is connected to a junction from which two pipes of lengths 1000 m and diameter 3000 m are parallel. These paratrel pipes are connected to another reservoir, which is having level of water 10 m below the water level of the above reservoir. Determine the total discharge if $\mathrm{f}=0.015$ Neglect minor losses.

OR
Q7) a) State and explain Buckingham's π - theorem? What do you mean by repeating variables? How are repeating variables selected in Dimensional Andýsis?
[8]
b) Prove that velocity through an orifice can be expressed as $V=\sqrt{2 g H} \phi\left[\frac{\mu}{\rho V H}, \frac{D}{H}, \frac{\sigma}{\rho V^{2} H}\right]$ Hhead, D orifice diameter, viscosity μ and density ρ, σ surface tension

$$
\mathrm{OR}
$$

Q8) a) Define following Dipensionless number and state their significance: [8] 0
i) Reynolds Number
ii) Mach's Number
iii) Euler's Numbere
iv) Weber Number
b) The pressure difference ΔP in pipe of diameter \triangle \& length L due to viscous flow depends on velocity V and viscosity μ and density ρ. Using Buckingham's π theorem, obtain expression forpressure difference. as
below $\Delta P=\frac{\mu v}{D} \times \frac{L}{D} \phi\left(\frac{S V D}{\mu}\right)$.

oooo

