Total No. of Questions : 9]

P9193

	d)	The	standard	deviation	and arithm	etiem	ean of the	distribution	are 12 and				
		45.5	respecti	vely. Coeff	ficient of v	ariatic	on of the d	istribution is	[2]				
		i)	26.37		i.	ii)	32.43						
		iii)	12.11		S S S S	iv)	22.15						
	e)	Anu	unbised c	oin is throw	vn 10 times	s, the p	robability	of getting 61	neads is[2]				
		i)	0.2000		.V?	ii)	0.2050						
		iii)	0.5	0,0		iv)	0.3						
	f)	The	value o	$\mathbf{f} \nabla . \overline{r}, \overline{r} \neq x$	xi + yj + zk	z, is			[1]				
		i)	0			ii)	1						
		iii)	2	N.		iv)	3	(
				VO.				8					
Q2)	a)	The	first fou	r moments	about the v	workin	ig mean 3	0.2 of a distri	bution are				
		0.25	5,6222	, 30.211 an	d 400.25.	Calcul	late the fir	st four mom	ents about				
		the	mean. A	lso evaluat	te β_1 , β_2 at	nd Co	mment u	pon the Skev	vness and				
		Kor	tosis of t	he distribut	tion.				[5]				
	b)	For	the tabu	lated value	s of <i>x</i> and	y give	n below f	fit a linear cu	rve of the				
	V	type	y = mx	+ c			S.		[5]				
		x	1.0 3.	0 5.0 7.0	9.0								
		y	1.5 2.3	8 4.0 4.7	6.0	Pr.							
	c)	The	regressi	on equation	ns are $8x -$	-10y -	+ 66 = 0	and $40 x + 1$	8y = 214.				
		The	value of	variance	f y is 9 Ei	nd			[5]				
		i)	The me	an values o	of x and y .								
		ii)	The co	rrelation x a	and y.		i cí t						
		iii)	The sta	ndard devi	ation of y.				Sol				
				A.	OR				No.				
Q3)	a)	Goals scored by two teams A and B in a football season were as follows:											
		\mathbf{X}		× ′		1		$\overline{\mathbf{O}}$	[5]				
Q3)		No	of Goals	Scored in	a match		0 1	23	4				
C		No	of Match	nes		A	27 9	8 5	4				
		B 17 9 6 5 3											
	b)	Usir	ng follow	ving values	of <i>x</i> and <i>y</i>	. Fit th	ne curve o	S the type $y =$	= ab ^x using				
		least	t square	method.			J - 20		[5]				
		x	2.1	2.5	3.1	3.5	4.1						
		У	5.14	6.788	10.29	13.:	58 20	.578					
						0 X	b						
					•	.a.V							
[617	'9]-3	25			2	×'							

[6179]-325

c) Obtain regression lines for the following data

x	2	3	5	7	9	100	12	15
у	2	5	8	10	12	24	15	16

Find estimal of y when x=6

- Q4) a) Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that they are both king. If
 - i) The first card drawn is replaced.

ii) First card drawn is not replaced.

- b) The number of accidents per week on a highway follows a poisson distribution with mean 0.5. Find the probability that during a week there will be at the most one accident. [5]
- c) The lifetime of an article has a normal distribution with mean 400 hours and standard deviation 50 hours. Assuming normal distribution. Find the expected number of articles out of 2000 whose lifetime lies between 335 hours to 465 hours [Given : z=1.3, A=0.4032] [5]
- Q5) a) A can hit target 1 out of 4 times. B can hit the target 2 out of 3 times, C can hit the target 3 out 4 times. Find the probability of at least two hit the target.

OR

b) A fair coin is tossed 5 times. What is the probability of getting at least two tails? [5]

c) A nationalized bank utilizes four teller windows to render fast service to the customers. on a particular day 800 customers were observed. They were given service at the different windows as follows. [5]

Window Number124Number of Customers150250170230

Test whether the customers are uniformly distribution over the windows.

 $\left[Given\,\chi^2_{3.005}=7.815\right]$

3

Q6) a) Find the angle between the tangents to the curve
$$\overline{r} = t\overline{t} + t^2\overline{j} + t^3\overline{k}$$
 at $t=1$
and $t=-1$ [5]
b) Find $f(r)$ so that $f(r) \overline{r}$ is soleholdal. [5]
c) Evaluate $\int_{c} \overline{F} \cdot d\overline{r}$ where $\overline{F} \Rightarrow (2x+y)\overline{t} + (3y-x)\overline{j}$ where C is the curve
along Straight line joining (0,0) and (3,2). [5]
OR
Q7) a) Find the directional derivative of $\varphi = 5x^2y - 5y^2z + 2z^2x$ at (1,1,1) in
the direction of line $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$ [5]
b) Solve any one: [5]
i) Show that $\nabla(\frac{\overline{a}.\overline{r}}{r^3}) = \frac{\overline{a}}{-3} \cdot \frac{3(\overline{a}.\overline{r})}{r^3}$
ii) Show that $\nabla(\frac{1}{r}\log t) = \frac{1}{t^3}$
c) Apply Green's theorem to evaluate.
 $\int (2x^2 - y^2) dx + (x^2 + y^2) dy$ Where C is the curve of area enclosed by
the axis and the upper half of the circle $x^2 + y^2 = 16$. [5]
Q8) a) Solve $\frac{\partial u}{\partial t} = c^2 \frac{\partial^3 u}{\partial x^2}$ subject to the following conditions. [8]
i) u is finite for all t
ii) $u(t,t) = 0, \forall t$
iv) $u(x,0) = u_0$ (constant), for $0 \le x \le t$
Where l is the length of the bar.
[6179]-325 4

- b) A tightly streatched string with fixed end points x=0 and x=l is initially in a position given by $y = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement y at any distance x from one end at any time t. [7]
- **Q9)** a) An infinitely uniform metal plate is enclosed between lines y=0 and y=l, for x = 0. The temperature is zero along the edges y=0 and y=l and at infimity. If the edge x=0 is kept at a constant temperature u_0 , find the temperature distribution u(x,y) [8]
 - b) Use fourier sine transform to solve partial differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \ 0 < x < \infty, t > 0$ [7]

subjected to

i)
$$u(0,t) = 0, \forall t$$

ii)
$$u(x,0) = 4, \ 0 < x < 4$$

iii) u(x,t) is bounded.

5 Another and the states of th