S.E. (Automation \& Robotics/Automobile \& Mechanical/Mecifanical/Mechanical SW) KINEMATICS OF MACHINERY (2019 Pattern) (Semester-IV) (202047)

Time: 2½ Hours
[Max. Marks : 70
Instructions to the candidates:

1) Answer Q. 1 or Q.2, Q. 3 or $Q .4, Q .5$ or Q.6, Q. 7 or $Q .8$.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Use-of calculator is allowed.
5) Assume suitable data, if necessary.

Q1) a) Explain acceleration image principle with neat sketch.
b) For the mechanism as shown in fig, the length of the links are $\mathrm{O}_{1} \mathrm{~A}=100 \mathrm{~mm}, \mathrm{O}_{2} \mathrm{~B}=150 \mathrm{~mm}, \mathrm{AB}=105 \mathrm{~mm}, \mathrm{BC}=300 \mathrm{~mm}$. Crank $\mathrm{O}_{1} \mathrm{~A}$ rotates at 180 rpm . find the acceleration of slider C using relative velocity and aceeleration method.

OR
Q2) a) Explain coriolis component of acceleration with neat sketch.
b) The length of various links of mechanisms as shown in fig are $\mathrm{OA}=0.3 \mathrm{~m}$, $\mathrm{AD}=1 \mathrm{~m}, \mathrm{CD}=0.8 \mathrm{~m}$ and $\mathrm{AC}=\mathrm{CB}$. Determine for the given configuration, (i) Velocity of slider B, (ii) Velocity of slider D, (iii) Angular velocity of CD, (iD) Angular velocity of $A B$. If OA rotates at 60 rpm clockwise. Use ICR method.

Q3) a) Explain 3 position relative pole method for synthesis of four bar chain mechanism.
b) A four bar chain Mechanism is to be synthesized by using three precision points, to generate the function $y=x^{1.5}$ for the range $1<x<4$, Input link is to start from 30° and is to haye range of 90°. The output link is to start at 0° and is to have range of 90°. Find out the values of x, y (Input angles) and (Output angles) corresponding to the three precision points.

Q4) a) Explain the following terms :
i) Dimensional Synthesis
ii) Type Synthesis
iii) Number Syothesis
b) Design a four bar mechanism with input link d_{2}, coupler link $l_{3} \&$ output link l_{4}. Angles $\theta \& \varphi$ for 3 successive positions are given below.

Position	1	2
	5	3
θ	40°	55°
φ	50°	60

[11]

If grounded link $l_{1}=30 \mathrm{~mm}$, using frudenstein's equation, find out lengths of other links to satisfy given positional conditions. Also draw synthesize mechanism in its first posifion

Q5) a) Explain classification of gears alongwith applications of each type.[6]
b) Two involute gears of 20° pressure angle are in mesh. The number of teeth on pinion is 20 and the gear ratio is 2 . If the pitch expressed in module is 5 mm and the pitch lipe speed is $1.2 \mathrm{~m} / \mathrm{s}$, assuming addendum as standard and equal to one module, find :
[12]
i) The angle turned through by pinion when one pair of teeth is in mesh ; and
ii) The maximum vetocity of sliding.

Q6) a) Define in case of Spur gear : (i) Module (ii) gear ratio (iii) Addendum (iv) diametral pitch (v) contact ratio
b) The pinions of an epicyclic train of gears is arranged as shown in Fig. How many tevolutions does the arm, to which B andec are attached, make?
[13]
i) when A makes one revolution clockwise and makes half a revolution anticlockwise and
ii) 20 when A makes one revolution clockwise and D is stationary. The 7 number of teeth on the gears A and D are 40 and 90 respectively.

Q7) a) Outline how storage ouffers may be deployed in automated production lines.
b) A cam, with a minimum radius of 25 mm , rotating clockwise at a uniform speed is to be designed to give a roller follower, at the end of a valve rod, motion described below:

1. To raise the valve through 50 mm during 120° rofation of the cam.;
2. To keep the valve fully raised through next 30°;
3. To lower the valve during next 600 , and
4. To keep the valve closed during rest of the revolution i.e. 150°; The diameter of the roller is 20 mm and the diameter of the cam shaft is 25 mm .
Draw the profile of the cam when the đine of stroke of the valve rod passes through the axis of the cam shart.

Q8) a) Write Methods of Transfer Lines with suitable example.
b) The following data related to aram profile for knife edge follower, in which the follower moves with uniform acceleration and retardation during the lift and returning it with S.H.M

1. Minimum radius of cam, $\mathrm{rb}=30 \mathrm{~mm}$.
2. Lift of follower, $S=25 \mathrm{~mm}$.
3. Offset of follower axis, $\mathrm{e}=6 \mathrm{~mm}$ towards right
4. Angle of ascent, $\theta 0=60^{\circ}$
5. Quter dwell angle, $\theta \mathrm{d}=45^{\circ}$.
6. Angle of return, $\theta \mathrm{r}=75^{\circ}$

Draw the cam profile. Also find maximum velocity during lift of follower and Maximum acceleration during return of follower. Cam is rotating uniformaly with 250 rpm

