SEAT No. : \square
[Total No. of Pages : 3

Time: 2½ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of electronic pocket calculator is allowed.
5) Assume Suitable data if necessary.

Q1) a) Define path line, streak line and stream tube and give examples of each.
b) Derive general equation for continuity for a 3D flow in Cartesian coordinates for a steady incompressible flow.
c) Find acceleration and corticity eomponents at a point (1, 1, 1) for following flow field. Find Velocity potential.

$$
u=2 x^{2}+3 y, v=2 x y+3 y^{2}+3 z y \quad w=\frac{-3 z^{2}}{2}+2 x z-9 y^{2} z
$$

OR
Q2) a) Differentiate between Convective and local Accelerations,
b) Discuss various types of flow with suitable exampre and måthematical expression.
c) The velocity component of 2D flow field are as follows.

$$
u=\frac{y^{3}}{3}+2 x-2 x^{2} y \quad v=x y^{2}-2 y-\frac{x^{3}}{3}
$$

i) Whether flow is possible
ii) Obtain expression for stream function
iii) Obtain an expression for potentiab function

Q3) a) Show that for a steady laminar floy through a circular pipe mean velocity of flow occurs at radial distance of 0.707 R from center of pipe where R is radius of pipe.
b) Derive Bernoulli's equation from Euler's equation along a stream line.
c) A lubricating oPof viscosity of 10 poise and specific gravity 0.8 is pumped throush a 50 mm diameter pipe. If the pressure drop per meter length of pipe is $20 \mathrm{kN} / \mathrm{m}^{2}$, determine :
[8]
i) Discharge of/oil in liter $/ \mathrm{sec}$
ii) Shear stress of pipe wall
iii) Tota friction drag

Power fequired per 50 m , length of pipe to maintin flow.

OR

Q4) a) Derive an expression of velocity and shearystress distribution for laminar flow through pipe.
b) With neat sketch explain the HOL and TEL.
c) Differentiate between ventuimeter and Orificemeter.

Determine the flow rate of Coí with specific gravity 0.7 flows through pipe of diameter 400 mm foclined at 30° with horizontal connected with mercury differetial manometer,Venturi meter of throat 200 mm gives deflection of 500 nim. Take throat to mouth distance of 600 fgim and flow meter coefficient as 0.98 .

Q5) a) What is drag and Lift? Explain different types of drag on ant immersed body.

What is boundary layer? Explain with neat Sketch the development of boundary layer over smooth flat plate.
c) A pipeline of length 2 km is used for power transmission. If 110.3625 kW power is to be transmitted through the pipe in which water having a pressure of $490.5 \mathrm{~N} / \mathrm{cm}^{2}$ at inlet is flowing. Find the diameter of the pipe and efficiency of transmission if the pressure drop over the length of pipe is $98.1 \mathrm{~N} / \mathrm{cm}^{2}$. Take $\mathrm{f}=0.00655^{\circ}$

Q6) a) Explain with neat sketches, hydrodynamically smooth and rough boundaries.
b) Explain the concept of equivalent pipe and derive Dupit's equation.[6]
c) Derive an expression for displacement, momentum and energy thicknesses.

Q7) a) Explain Reynolds/Number with example.
b) In a geonetrically similar model of weir the discharge is $0.15 \mathrm{~m}^{3} / \mathrm{s}$. If the scale of the model is $1 / 50$, find the discharge of the prototype. [4]
c) Frictionaltorque T of a propeller in a turbulent flow depends on density of liquid ρ, viscosity of liquid μ, speed N rpm, dameter of propeller shaft D. Using Buckingham's pi theorem show that :

$$
\mathrm{T}=\rho \mathrm{N}^{2} \mathrm{D}^{5} f\left[\frac{\rho \mathrm{ND}^{2}}{\mu}\right]
$$

Q8) a) Explain the Weber's mode law.
b) Find the scale ratio of model, by using the following data:

For model, velocity or water through the circular pipe is $1 \mathrm{~m} / \mathrm{s}$.
For prototype, velocity of $0.14 \mathrm{~m} / \mathrm{s}$ through pipe of diameter 50 mm . Assume $V_{\text {water }}=0.01 \mathrm{~cm}^{2} / \mathrm{sec}, v_{\text {oil }}=0.007 \mathrm{~cm}^{2} / \mathrm{sec}$. For Dynamic similarity also find thediameter of pipe for model.
c) Using Buckingham's pi theorem show that the discharge Q consumed by oil ring is given by:

$$
\mathrm{Q}=\mathrm{D}^{3} \mathrm{~N} f\left(\frac{\mu}{\rho N D^{2}}, \frac{\sigma}{\rho D^{3} N^{2}}, \frac{\gamma}{\rho D N^{2}}\right)
$$

Where, $\mathrm{D}=$ diameter of the ring, $\mathrm{N}=$ rotatronal speed of the shaft, $\rho=$ density, $\mu=$ viscosity, $\sigma=$ surface tension, $\gamma=$ specific weight of the oil.

