$\square$

# S.E. (Mechanical /Auitomation \& Robotics/ Automobile \& Mechanical Sandwich) (Insem) KINEMATICS OF MACHINERY (202047) (2.019 Pattern) (Semester - II) 

Time: 1 Hour]

## Instructions to the candidates:

1) Attempt Q. 1 or Q.2, Q. 3 or Q.4.
2) Neat diagrams must be drawn wherever necessary.
3) Use of calculator is allowed.
4) Assumé suitable data, if necessary.

Q1) a) [50
b) Explain the Grashoff's law in four bar mechanism.
c) For kinematic linkage as shown in fig 1, calculate the following:
i) Number of binary, emary and quaternary links.
ii) Number of degrees of freedom.

Fig. 1
OR
P.T.O.

Q2) a) Compare machine and mechanism. ©
b) Define Degree of Freedom and Cálculate the number of degrees of freedom of the mechanism as shiown in fig. 2.

c) Explaîhdifferent types of constrained motion with suitable example. [5]

Q3) a) In an I.C. engine mechanism, the crank is 200 mm long and connecting ®rod is 750 mm long. When the ange is turned by the crank is $60^{\circ}$ from
I.D.C and angular velocity of the crank is $20 \mathrm{rad} / \mathrm{sec}^{2}$ find,
i) Velocity of piston
ii) Acceleration of pistron
b) Give comparison betrêer Single Hooke's Joint and Double Hooke's Joint.


Q4) a) What is loop closure equation? Derive the same for four bar mechanism.
b) Two horizontal shafts are connected by a single Hooke's joint. If the speed of the driven shaft between 315 and 285 r.p.m, find-the greatest permissible angle between the shafts. Also calculaeeangular displacement of driving shaft.

